

EASTERN PROVINCE-JURISDICTIONAL SUSTAINABLE LANDSCAPE PROJECT

STANDARD OPERATING PROCEDURES FOR FORESTRY

AUGUST, 2022

About the Standard Operating Procedure (SOP)

Standard Operat	ing Procedure							
Version	Final Version	Date of Issue	August 2023					
Purpose	This SOP details how to set up and execute data collection for forest measurement and inventory approaches to assist in quantifying the amount of carbon within the various organic pools found within the eastern province landscape							
Responsibilities	 MRV Coordinator a) In coordination with the PIU, the role will entail working with forest sector lead officers to deliver high-quality MRV outputs. b) Will serve as a focal point for enquiries regarding national MRV systems. c) Will work closely with forest sector leads person, traditional leaders, community leaders, and private sector partners in developing and maintaining the MRV systems. d) Oversee data collection according to indicators and metrices provided for in the standard operating procedures for Forestry. e) Provide guidance in the development of the sampling framework for Energy, Forestry, and Agriculture. 							
Prerequisites	Sampling design are provided in	the MRV manage	ement plan					
Related documents	 The following are the related do a) MRV management plan b) ZIFLP-MRV mobile applicati c) Integrated Land Use Assessimation Manual d) Forest Biophysical Field Data Assessment Phase II Zambia 	ocuments to be use on software ment Phase II Zan ita Entry Booklet	ed alongside the SOP: nbia Biophysical Field Integrated Land Use					

CONTENTS

ACR	RONYMNS	4
1.0	INTRODUCTION-BIOPHYSICAL ASSESSMENTS	5
2.0	SOP FIELD SAFETY	5
3. 0	SOP LABELING PLOTS	6
4.0	SOP DATA COLLECTION	7
Step	o 16: Area of Canopy Opening	43
Step	o 17: Tree Crown Area from the Ground	43
Step	o 18 Fire measurements	44
Step	o 19: Data assembly	45
5.0	SOP DATA ANALYSIS-BIOPHYSICAL ASSESSMENTS	45
6.0	SOP QUALITY ASSURANCE/QUALITY CONTROL	66
7.0 SO	OP DATA STORAGE AND ARCHIVING	68
REFER	RENCES	71

ACRONYMNS

EP-JSLP	Eastern Province Jurisdictional Sustainable Landscape Programme
GHG	Green House Gases
GPS	Global Positioning System
ID	Identification
ILUA II	Integrated Land use Assessment Phase Two
IPCC	Intergovernmental Panel on Climate Change
MRV	Monitoring Reporting and Verification
PIU	Project Implementation Unit
PVC	Polyvinyl Chloride
SOP	Standard Operating Procedure
UTM	Universal Transverse Mercator
ZEMA	Zambia Environmental Management Agency
ZIFLP	Zambia Integrated Forest Programme

1.0 INTRODUCTION-BIOPHYSICAL ASSESSMENTS

The Zambia Integrated Forest Landscape Project (ZIFLP) in Eastern province is supported by the World Bank and its objective is to improve landscape management and increase environmental and economic benefits for targeted rural communities in Eastern Province and to improve Zambia's capacity to respond promptly and effectively to an Eligible Crisis or Emergency.

The project provides support to rural communities in the Eastern Province to allow them to better manage the resources of their landscapes so as to reduce deforestation and unsustainable agricultural expansion; enhance benefits they receive from forestry, agriculture and wildlife; and reduce their vulnerability to climate change. Simultaneously, the project is supporting the creation of the enabling environment for subsequent carbon emission reduction purchases. The ZIFLP's key beneficiaries are the rural poor communities of the Eastern province.

The Zambia Environmental Management Agency (ZEMA) with support from ZIFLP have been mandated to develop national and subnational (EP-JSLP) Measurement, Reporting and Verification System (MRV) and other Green House Gas (GHG) emission-related processes and systems under subcomponent 1.2: Emissions Reduction Framework. With this support, ZEMA will have one integrated and robust MRV that will be used to monitor emissions for the EP-JSLP and at national level.

The aim of this document is to provide standard field measurement approaches to assist in quantifying the amount of carbon within the various organic pools found within the eastern province landscape. The methods presented in Standard Operating Procedure (SOP) is based on the Integrated Land Use Assessment (ILUA II) and good practices and lessons from drawn from regional and international experiences.

This SOP will be used in collaboration with the following:

- a) MRV management plan
- b) ZIFLP-MRV mobile application software
- c) Integrated Land Use Assessment Phase II Zambia Biophysical Field Manual
- d) Forest Biophysical Field Data Entry Booklet Integrated Land Use Assessment Phase II Zambia

The SOPs are grouped by purpose. The first set of SOPs are general and can be used for many field measurement goals. A set of SOPs are also presented on the measurement of all the carbon pools. These can be used to estimate the standing stock of a carbon pool within a stratum. Another set of SOPs are presented to estimate the emissions resulting from selective logging. Various SOPs are also presented on estimating canopy cover. These SOPs should only be used when the purpose of data collection is known. This SOP along with the above mentioned documents should be used after receiving extensive field training in the measurement methods performed by a qualified forester or ecologist.

2.0 SOP FIELD SAFETY

Safety is foremost priority and precautions must be taken and strictly adhered to. Planned field activities must remain flexible and allow for adjustments in response to on-the-ground assessments of hazards and safety conditions. Field personnel must be well prepared, vigilant and always avoid unnecessary risks. It is recommended that personnel engaging in field activities hold general first aid training¹. The following guidelines will apply to all field-

¹ Sarah M. W et.al, 2012: Standard Operating Procedures for Terrestrial Carbon Measurement **5** | P a g e

based activities:

- a) Field crews will include no less than three people who must be directly accompanying each other for the entire duration of field work. Ideally field crews should include a minimum of three people; in case of an accident resulting in injury one person may leave to seek help while another person stays with the injured crew member.
- b) For each day in the field, specific location and scheduling information must be logged in advance with a field team leader who can be reached at any time during the anticipated duration of field work. While in the field, crews should check in with their designated field team leader once per day.
- c) Each independent crew must carry a radio with wider coverage, satellite phone or cell phone and any other necessary field equipment provided by the project. Crews should make sure to check batteries each time before entering the field.
- d) Trip planning will include identification of the nearest medical facility and specific directions to reach that facility. When in areas with poisonous snakes, advance communication should be made to verify that appropriate antivenins' are available.
- e) Personnel will carry personal identification and, if possible, project name tags at all times.
- f) Field crews will carry a first aid kit with them at all times. First aid kits should contain Epinephrin/Adrenalin or an antihistamine for allergic reactions (e.g. bee/wasp stings). insect repellent should be carried in the field and other relevant medical supplies.
- g) Where poisonous snakes are common, snake chaps are recommended. In the event of snake bite, the victim should be taken immediately to a medical facility.
- h) Basic field clothing should be appropriate for the range of field conditions likely to be encountered. This will include: sturdy boots with good ankle support or rubber boots, long sleeves and pants, rain gear, and gloves. Blaze orange (vest or hat) is recommended when and where hunting may be taking place. Where necessary, to avoid extended contact with plant oils, ticks, and a change of clothes should be made at the end of each day in the field and field clothes should not be re-worn without first laundering.
- i) Ensure personnel stay sufficiently hydrated and carry enough clean water for the intended activity. Carry iodine tablets or other water purification tablets in case there is a need to use water from unpurified sources.
- j) Some plots may be too hazardous to sample. Situations include: plot center on a slope too steep to safely collect data (i.e., >100% slope or on a cliff); presence of bees; illegal activities; etc. When hazardous situations arise, a discussion should be conducted among the team members to assess the situation.

3.0 SOP LABELING PLOTS

The following provides recommendations on how plots should be labeled. However, this SOP must be altered and provide explicit instructions on how each plot will be labeled for a given field measurement campaign.

Proper plot labeling is important because it provides a unique signature to sampled plots as well as information about the sampling conducted. Experience has shown that plots should be named with multiple characters defining the type of sampling conducted, the area, the number of the plot and any other relevant information.

All plots must be numbered with a unique name and number. The labeling system must be finalized prior to data collection. The character denoting the number of the plot should

include at least as many digits as total numbers of plots expected to be sampled. In other words, if the number of plots is expected to be greater than 100 but less than 1000, the number characters must be at least three integers e.g. 001 to 999.

The following is an example of a recommended plot labeling format: The coordinates of plot marker position are determined with the help of GPS receiver (as averaging positions of several measurements). Then, an identification code will be assigned to identify each points measured by the GPS as follows:

[Cluster number] + "P" + [Plot number] + "_M" (="Marker"), e.g. for cluster 113, plot 3 => 113P3_M

- A photo of the marker point may be taken, and it should show the same code;
- A steel marker pin should be positioned in the ground at the starting point of all plots.

Reference objects for starting point:

- Three prominent and preferably permanent reference objects (rock, non-abundant tree species or largest tree, house etc.) as fixed points must be identified for a marker.
- These objects should be 80-130 degrees apart to help with triangulation. The following information is recorded about the reference point: object ID, type of object,

bearing (compass reading in degrees) to the plot marker, distance to the plot marker, tree diameter (if object is a tree), and photo ID.

- Reference point coordinates are only recorded if these cannot be measured at the plot marker point.
- A photo should be taken for each reference objects, and coded as follows:
 [Cluster number] + "P"+ [plot number] + "_R" + [running photo number within plot] (e.g. Photo of the 3rd reference taken in the 2nd plot on the cluster number 28 => 28P2_R3

4.0 SOP DATA COLLECTION

This SOP will consider measurement and data collection in forestland, cropland, grassland, wetland, and other lands for the following:

- a) Measurement of trees
- b) Measurement of bamboos
- c) Non-tree woody vegetation measurements
- d) Herbaceous vegetation
- e) Measurement of litter
- f) Sampling soil carbon
- g) Measurement of standing dead wood
- h) Measurement of lying dead wood
- i) Measurement and estimation of dead wood density classes
- j) Measurement of canopy cover
- k) Area of canopy opening
- I) Forest fires
- m) Tree crown area from the ground
- n) Stump data
- o) Regeneration

The data collected will be assembled and analyzed and this is considered under SOP for data analysis. Details of the SOP for data collection are provided in the table 4.1.

Table 4.1 Standard Operating Pi	rocedure for Forestry
---------------------------------	-----------------------

Steps	Description					
Step 1:	Step 1a Identify data to be collected. Provided belo	w is the sa	mpling f	ramework		
Planning the	and number of persons to be involved in data colle	cuon.				
data collection	Sampling Design					
	Sample details	Clusters	Plots	Sample size		
	Total number of sample plots in Forest Land	116 ²	464	51.7%		
	Total Number of sample plots in cropland	63	252	27.4%		
	Total Number of Sample Plots in Grassland	27	108	11.7%		
	• Total Number of Sample Plots in Settlements	13	52	5.7%		
	Total Number of Sample Plots in Wetlands	8	32	3.5%		
	Total clusters and samples	233	932	-		
	Confidence level			95%		
	Margin of Error (%)			5%		
	 The baseline data categories will be collected through the following methods; Biophysical measurements-Biomass carbon stock, soil carbon and deadwood and litter Fuel removals data-Survey Wood removals for timber-Records(database) 					
	This data will be collated to generate the forestry in Province in Zambia. The surveys and tests will tak and forest plantations. Respondents will be asked t amount of wood removals for timber and fuel woo a specified period.	ventory da e place in i o provide i d used fror	tabase f ndigeno nformat n the fo	or Eastern ous forests ion on the prests over		
	Step 1 b. The MRV Coordinator estimates the neo data collection	essary leve	el of effo	ort for the		
	Step 1c. The MRV Coordinator identifies the personant the data collection in line with the records in the M	ons who m IRV Manag	nay be iı ement P	nvolved in Plan.		
	Step 1d. The data collection timeline to be followe management plan.	d is as stip	ulated ir	n the MRV		

² Each cluster has 4 rectangular sample plots: the sample plots are spaced at 500m apart. And each sample plot has 2 sub plots: a 10 x 20m rectangular sub-plot for saplings, and 4.99m circular sub-plot for smaller seedlings

Steps	Description
	Step 1 e. The PIU will arrange logistics, including safety kit, field clothing, tablets,
	GPS, weighing scales, note books, sufficient time for data collection,
	remunerations arrangements.
Step 2: Identificatio	Step 2a. Forestry Biophysical Assessment, the Permanent Observation Units Framework for Eastern Province. The MRV Coordinator will compile a list
n of sampling units/design	be identified and marked geographically on the Map as shown below.
	There are 233 Clusters 932 Sample Plots disolaved
	Figure 4.1 Clusters and sample plots
	 The sampling design will include the following elements: Forestry regeneration data Forestry sapling data Forestry data collected on trees, shrubs, deadwood, bamboo, litter, soil, carbon content, biomass density, forest fires, biodiversity, carbon and none carbon credit benefits. Forest land areas (indigenous forests and forest plantations) IPCC land use category and Land conversions (i.e. forestland, settlements, cropland, grassland, wetlands and other)

Steps	Description	
	Figure 4.2 sample plot The ideal sample fram reduction in deforesta	s for soil sampling against non-soil sample plots e is identified by estimating the total natural forest area, tion, emissions reduction, and land reforested/afforested,
	land users who have a Provided in the table land cover data.	dopted sustainable land management practices. below is the harmonized classification scheme based on
	Harmonized classific	ation scheme based on land cover data
	Targeted datasets	Descriptions
	1. Settlements	Land covered mainly by densely populated and organized or irregular settlement patterns surrounding cities, towns, chiefdoms and rural centers commonly referred to as urban and rural built-up areas.
	2. Cropland	Land actively used to grow agriculture (annual and perennial) crops which may be irrigated or rain feed for commercial, peasant and small scale farms around urban and rural settlements
	3. Grasslands	Land that includes wooded rangeland that may be covered mainly by grasslands, plains, ambos, pans found along major river basins and water channels.
	4. Forest land	This is land covered both by natural and planted forest meeting the threshold of 10% canopy cover growing over a minimum area of 0.5 ha with trees growing

Steps	Description						
		above 5n	n height.				
	5. Wetlands	Land whi marshlan (surface v	ich is waterlogged d, perennial flood water bodies inclu	d, may be wo ed plains and ded).	ooded such as swampy areas		
	6. Other land	Barren la as sandy include c infrastruc	nd covered by na dunes, beach san old open quarry s cture outside settl	tural bare ea d, rocky outo ites for mine ements.	rth / soil such crops and may es and related		
	Land use classification system						
	in ILUA-II Biophysical	rest Other wooded land Other land Water Bare land Inland water					
	Dryevergree						
	Major Drydeciduou types Moist even fores	is forest igreen t dlands	Forest Vs Non-Forest	Grassland Cultivated and managed land Built-up areas Other land			
	Figure 4.3 Land use C	lassificatio	n System				
Step 3: Sampling	Provided below is the o	detailed sa	mpling framework	ζ.			
Frame For The Biophysical	Observation Points	u sample p	# of Plots By Site	# of Subset	s / units		
Assessment	1 OBSERVED POINT on a MAP is for the FIRST PLOT in a cluster and represents a SAMPLING CLUSTER						
	1 Sampling Cluster		Has 4 Woody Plots	12 Observa	ition Units		
	233 Point Sites Re 233 Clusters	presents	Has 932 Woody Plots	2,796 Obse	ervation Units		
	Sampling details by lan	d cover scl	heme				
	Sampling details by la scheme	and cover	Clusters	Plots	Sample size		
	1. Total # of sample Forestland	e plots in	116	464	49.8%		

Steps	Description									
	2. Total # Croplan	of sa d	ample	plots in	63		252		27.0	0%
	 2. Total # of sample plots in Cropland 3. Total # of sample plots in Grassland 4. Total # of sample plots in Settlement 5. Total # of sample plots in Wetland 6. Total # of sample plots in Other land Total # of Sample plots for the Inventory 			27		108		11.0	6%	
StepsDescription2. Total # of sample Cropland3. Total # of sample in Grassland4. Total # of sample in Settlement5. Total # of sample in Wetland6. Total # of sample in Other land7. Total # of sample in Other land6. Total # of sample in Other land7. Total # of sample in Other land7. Total # of sample in Other land8. Total # of Sample plots Inventory7. Total # of Sample plots Inventory8. Day7. Average / Day8. Day7. In 23.3 186.4 Days			sample plots 13 ent			52		5.6%		
	5. Tota in V	al # o /etlar	f samp nd	le plots	8		32		3.4%	
	6. Tota in C	al # o ther	f samp land	le plots	6		24		2.69	%
	Total # of S Inventory	ample	e plots	for the	233		932		_	
	Estimated ma	an da	vs rea	uired for t	the biophys	ical as	sessm	ent		
	Statistics	Team 1		Team 2	Team 3	Tea	eam 4 Team		5	Total
	Average / Day	2		2	2	2	2			10 Clusters
	Average / Day	8		8	8	8		8		40 Plots
	In 23.3 Days	186	5.4	186.4	186.4	186	. 4	186.4	Ļ	932 Plots
	Overall timel	ine fo	or sam	pling						
	Statistics		5 Fie	eld Teams	<u>т</u>		Total			
	Average / [Day	2 - 3	3 Clusters	40		40 - 60 Plots			
	MD = 19 to	24	8 - 1	2 Plots /	Team 4		40 - 60 Plots			
	Utmost Days	21	- 932 Plo					ots		
	The Soil Sam • Soil p • Auge • Litter Dry litter san balance.	ples rofile r sam samp nples	pits = ples = ples = should	77 308 77 d be colle	ected in a qu	uadrai	nt of 1	. m², an	nd we	eighed on a
	Important No	otes								

Steps	Description
	1. A single dot (is usually PLOT 1) observed on a map represents a cluster
	of 4 sample plots as on the figure to the right side of this slide. Each site
	sample units
	2. The geographical location of the first sample plot at each observation site
	has calculation and determined coordinates, and
	3. The subsequent 3 sample plots should be established <i>insitu</i> at 500m apart
	to the North (360°) to the East (90°) to the South (180°) directions, to a
	corner of each grid
	4. For some selected sites, a soil profile pit should be established some 5 m
	away from the edge of Plot No 1, and 4 auger samples collected around
	the pit in NEWS sites
	Soil Pit1. Cluster
	Plot end 20 m
	500 m
	Plot 2
	Composite Soil sample
	and litter sample 450 m
	Cluster reference
	point Plot orientation
	Plot starting point Measurement
	Point (MP)
	Soil Pit Subplots (-10m) 20m (+ 10m)
	3.99 m
	3. Sapling subplot 4. Regeneration subplot (r=3.99m)
	5cm <dbh<10cm< td=""></dbh<10cm<>
	(20mx10m)
	Figure 4.4 Cluster and Sample Plot
	Browided below is a list of field forms description and corresponding information
	level. Field data will be recorded electronically on the ZEMA app using mobile
	devices which will be linked to the climate change portal. The data will be
	downloaded and entered in Open-FORIS (OF) Collect database at the Forestry
	Department (FD) headquarter in Lusaka for further analysis. The electronic field
	and are contained in the MRV mobile Application.

Steps	Description	
	Form no.	Description
	F1	Cluster: General information, time data, access to plot
	F2	Plot: General plot description data, time data, marker position,
		plot level data
F3 Plot: LUVS and plot level data		Plot: LUVS and plot level data
	F4	Regeneration data
	F5a	Sapling data (dbh < 10 cm)
	F5b	Tree data (dbh ≥ 10 cm)
	F6	Stump data and dead wood data
	F7	Bamboo data
	F8	Soils
	F9	Fine CWD and Litter

Data Codes in the baseline sample frame that should be considered.

Updated: May 23, 2013		Designation / Protection status		Livestock Management		
		Description	Code	Description		
	0	Strict nature reserve/ Wilderness area	0	Not Applicable		
Assument Popel	1	National Park	1	Communal grazing		
Accessibility	2	Natural monument	2	Fenced unimproved pastures		
Code Description	3	Habitat/ species management area	3	Fenced Improved pastures		
0 Accessible	4	Protected landscape / seascape	4	Tethering		
 Inaccessible due to slope 	5	Gazetted national and local forests	90	Not Known		
2 Inaccessible due to owner refusal	6	Game Management Areas	99	Other		
3 Inaccessible due to restricted area	7	Other Multiple Purpose	Stand	origin		
4 Inaccessible due to water body	8	Production Indigenous	Code	Description		
99 Inaccessible due to other reason	9	Production Exotic	N	Natural		
Land Use/Vegetation Type Section	90	Not known	Р	Plantation		
Code Description	- 99	Other	С	Coppice		
Forest	Fire o	ccurrence	NK	Not known		
 Parinari forest and Copperbelt chipya 	Code	Description	Stand	structure		
2 Marquesia forest	0	There is no evidence of fire	Code	Description		
3 Lake basin chipya	1	Evidence of fire during the current year	0	Not applicable		
4 Chryptosepalum forest	2	Evidence of fire during the previous years	1	Single layer		
5 Kalahari sand forest	Fire ty	pe	2	Two-layer vegetation		
6 Baikiaea forest and deciduous thicket	Code	Description	3	Three-layer vegetation		
7 Itigi forest	0	Not applicable	Under	growth		
8 Montane forest	1	Underground fire	Code	Description		
9 Swamp forest	2	Surface fire	0	No undergrowth		
10 Riparian forest	3	Crown fire	1	Bushes		
11 Miombo woodland on plateau	Envire	onmental problems	2	Grass		
12 Miombo woodland on hills	Code	Description	3	Elephant grass		
13 Kalahari woodland on sands	0	Not applicable	4	New tree generation		
14 Mopane woodland on clay	1	Not existing	5	Mixed of bushes, grass, herb		
15 Munga woodland on heavy soils	2	Loss of water levels in rivers and other sourc	99	Other vegetation		
16 Broadleaved forest plantation (Eucalyptus)	3	Drought	Shrub	coverage		
17 Coniferous forest plantation (Pine)	4	Flooding	Code	Description		
Other Wooded Land	5	Poor water quality	0	Not applicable		
21 Termitary vegetation and bush groups	6	Pests	1	<10%		
22 Shrubs / Thickets	7	Erosion	2	10-40%		
Other Land	8	Loss of soil fertility	3	40-70%		
31 Dambos and Flood Plains	9	Burning	4	>70%		
32 Marshland and Swamps	10	Landslide	Tree/	forest Management prope		

Steps	Descript	ion					
	Other Woode	ed Land	5	Poor water quality	0	Not applicable	Π
	21 Termit	tary vegetation and bush groups	6	Pests	1	<10%	
	22 Shrubs Other Land	s / Thickets	7	Erosion Loss of soil fertility	2	10-40%	
	31 Dambo	os and Flood Plains	9	Burning	4	>70%	
	32 Marsh	land and Swamps	10	Landslide Wind throw	Tree/	Forest Management proposal	
	34 Sandy	dune	12	Overexploitation of forest reso	urces 0	No treatment	
	35 Bare R	Rock / Outcrop	13	Overgrazing	1	Selective cutting (commercial)	
	36 Annua 37 Perenn	nial Crop	14	Salinization	3	Thinning	
	38 Pasture	e Land	16	Fungus	4	Clear felling	
	40 Urban	V	Code	Description	em 05 06	Law enforcement Change designation status	
	41 Rural		1	Low	07	Pruning	
	Water, No ve	getation Water	2	Medium	08	Coppicing Pollarding	
	90 Outsid	le land area (e.g. outside country)	4	Very high	10	Cleaning /Weeding	
	31 Windb	oreak	Grazi	ng Intensity	11	Enrichment Planting	
	33 Aesthe	etic	0	No grazing	12	Early burning	
	34 Recrea	ation and tourism potential	1	Occasional	14	Boundary maintenance	
	99 Other	(specify)	3	Extensive		ould	
		1. Cluster		2. Plot	3. St	ibplots Measurement	
		1		Soil Pit 20 m	(-10m)	20m Point (MP) (+ 10m)	н
		500 m		5 m	[н
	±	1:7					
	Pk	ot 2				(3.99 m) 3	
				ter III	1		н
				E S E		\sim	н
	2 0	Plot 4	1 Km	2	3. Sapling subp	lot 4. Regeneration	
		450 m	C: 50	omposite il sample	5cm_DBH<10cm	n subplot (r=3.99m)	
				nd litter sample	(20mx10m)		н
	-	1 Km					н
	1 °			1			
	Source: I						
	Jource. I	LUAN					
			- 6 41	.	Al		
	Provided	below are some	or the	coordinates for	the sample	e plots.	
	ID	Zone Pr	ovince	District	XCOORD	YCOORD	
	1	36 E	astern	Chadiza	32.502737	14.198430	
	2	36 E	astern	Chadiza	32.504593	13.995495	
	3	36 F	astern	Chadiza	32 602731	13 998424	
	4	34 E	actorn	Chadiza	32.002/31	13,999423	
	-	30 L	ascern		32.702720	13.770425	
	S	36 E	astern	VUDWI	32.802726	13.778425	
	6	36 E	astern	Kasenengwa	32.302726	13./98428	
	7	36 E	astern	Kasenengwa	32.102725	13.698435	
	8	36 E	astern	Kasenengwa	32.302724	13.598427	
	9	36 E	astern	Chipangali	32.504580	13.495497	
	10	36 E	astern	Chipangali	32.702723	13.398424	
	11	36 5	astorn	Chipangali	32 802717	13 398423	
	11	30 L	ascern	Chipangan	32.002717	13.370425	
	12	36 E	astern	Chipangali	32.602719	13.098425	
	13	36 E	astern	Chipangali	32.702718	13.098424	
	14	36 E	astern	Katete	31.902743	14.398438	
	15	36 E	astern	Katete	32.302733	14.198429	
	16	36	astern	Katete	31.702739	14.098435	
	17	36	astorn	Katoto	32 004500	13 995505	
		E	astern	Katele	- 52.004599	13.993305	
	18	36 E	astern	Lumezi	33.002723	13.198425	
	19	36 E	astern	Lumezi	32.902720	13.098423	
	20	36 E	astern	Lumezi	32.302721	12.998434	
	21	36 E	astern	Lumezi	32.504567	12.995488	

Steps	Description										
	22 36 Eastern Lumezi 32.702718 12.998422										
Steps Step 3: Training and calibration	Description2236EasternLumezi32.70271812.998422Step 3a. As a first step in the data collection, the MRV Coordinator and the Trainer organize and prepare a training event for the persons identified in sub- step 1c as data collectors.All the crew members taking part in forest carbon measurement should understand the basic ideas behind forest carbon measurement and how to use all the materials and equipment to obtain appropriate results needed. The training should cover the following topics as a minimum requirement: a)a)Overview of the National Forest Monitoring and Assessment Plan; and Introduction of Training Facilitators b)b)Technical Updates and Overall Expectations of the Field Teams Training Outcomesc)Introductions to the biophysical sampling design (Forest Inventory) 										
	 i) How to use different tools in the field j) Learning the Practice of plot establishment k) Travel to Training Site 3/4 for Practical l) GPS Route Navigation Practical including how to conduct field measurements with GPS and identification of reference points m) Conducting the field data collection on 2 Temporary Inventory Plots (using the tools, tree identification, recordings n) Field Teams Debriefing Reports o) Quality Assurance Expectations p) Field Coordination Expectations q) How to use the electronic Tablet and enter data on the MRV mobile App 										
	r) Quality management practicesStep 3b. The Trainer implements the training event following these basic										
	 principles: a) Environment for active participation, where participants can ask questions and share opinions b) Encourage communication between the data collectors c) Record attendance of the collectors d) Assess the capacity of the data collectors at the end of the training and record the results. 										
	Step 3c. The MRV Coordinator and the Trainer prepare a report summarizing the training actions taken, the attendance and the results of the assessment of capacity.										
Step4:Distributethesample	Sub-Step 4a. The MRV Coordinator in collaboration with MRV Forestry Sector Lead and MRV provincial sector leader decides on sample units to be assessed.										

Steps	Description
units among	Sub-Step 4b. The MRV Coordinator allocates sample units to Data Collectors in
Data	each district. The MRV Coordinator uses a list of locations in each district to
Collectors	distribute the samples to the collectors.
	Sub-Step 4c. The Coordinator records the number of sample areas, the Data
	Collectors assigned to assess those areas
Step 5: Data	Step 5a. Identify the local community leaders and establish contact prior to
collection by	arriving at the cluster site
Data	
Collectors	Step 5b. Explain clearly to the local community leaders the purpose of the visit. Visual aid materials such as maps, aerial photograph or satellite image of the target area may be useful in the discussions. Briefly explain measurements to be carried out, use of the data and information collected
	Step 5c. In collaboration with the local people, clearly identify areas to be sampled.
	Sub-Step 5d. Access to the plot: Make reference to pre-drawn locations of the plots on topographical maps. Record the GPS coordinates where the field vehicle is stationed, the date, the departure/start time, bearing and distance to 1st plot of the day. Navigate to predetermined latitude and longitude using a GPS.
	Sub-Step 5e. At the plot center/corner, mark a 'waypoint' on GPS and record GPS coordinates, accuracy, elevation, and waypoint number on data sheet. To record a GPS location, place the GPS at the plot center/corner and let it record for > 5 minutes prior to marking a 'waypoint'. ³ The minimum precision level should be \pm 5 m. Leaving the GPS at one location for several minutes allows the GPS to get a more accurate location by averaging many location acquisitions. The longer the GPS acquires locations the more accurate the final location. The accurate of the location is estimated and is displayed by the GPS. If there is heavy vegetation cover, it may take a longer time to acquire an accurate location. In some cases, it may be necessary to move slightly or devise a way of getting the GPS higher in the air to acquire satellite signals.
	Sub-Step 5f. Label the plot based on plot labeling described in Section 3.0
	 A single dot (is usually PLOT 1) observed on a map represents a cluster of 4 sample plots. Each site has 4 planned observation units (sample plots), therefore a cluster has 12 sample units The geographical location of the first sample plot at each observation site has calculation and determined coordinates, and The subsequent 3 sample plots should be established <i>insitu</i> at 500m apart to the North (360°) to the East (90°) to the South (180°) directions, to a point 500m to the west where the first plot is located in the southwest corner of each grid For some selected sites, a soil profile pit should be established some 5 m away from the odge of Plot Ne 1, and 4 away server los collected in the south
	away from the edge of Plot No 1, and 4 auger samples collected around the pit in NEWS sites
	 Temporary Plots. For temporary plots place a wooden stake at the plot center in circular plots and at each corner in square/rectangular plots. This will be used to facilitate verification of plot measurements where required.

Steps	Description
	6. Permanent Plots. Permanent plots shall be marked using materials that will last longer than the project lifetime. For square or rectangular plots mark each of the corners with galvanized metal pin), including the corners for each nest size.
	Step 5 g. Area Correction due to Slope
	This correction factor accounts for the fact that distances measured along a slope are projected to the horizontal plane, they will be smaller.
	 a) Measure the slope using a clinometer. If the slope is greater than 10% record the exact slope for later correction of plot area. (i). Two people are required to measure slope. (ii). The person with the clinometer shall identify the eye-level sight of the partner. (iii). The person with the clinometer should stand in the center of the plot and the partner should go to the edge of the larger nested plot. (iv). The person with the clinometer standing in the center of the plot shall then aim at the eye-level location in the partner and record the angle reading displayed in the clinometer. This angle is the slope angle and could be recorded as degrees (unit should be delineated in field sheets). b) Describe land and vegetation conditions of plot and if there is anything unique or unusual in the plot or directly surrounding the plot. This could include things such as small streams, trails, large boulder or termite nest, and proximity to a paved road. c) For permanent plots only: write detailed instructions on how to access the plot in the future. Note any hazards encountered in the route to the plot. d) Establish plots as explained below. e) Mark center of the plot with wooden stake wrapped with flagging tape. This plot center mark will be used to identify the plot center during any third-party verification or quality checks.

Steps 6a to 6c should be undertaken for the following:
 Forestry Regeneration data collected (REGENERATION, SHRUBS (DBH < 5 cm, live seedlings, saplings, shrubs. Tick count.) Plot radius = 4.99 m
2. Forestry Sapling data collected (Trees 5 cm < DBH <10 cm are recorded in 20 m X 10 m subplot.)
3. Forestry Trees data collected (Trees DBH > 10 cm are recorded in 20 m X 50 m plot.)
1. Step 6 a Tree Height Measurements.
The height of trees, is usually done by creating two right triangles. The distance from the object and the person measuring is measured and two angles are measured. The actual height is then calculated using trigonometry during data analysis. The following steps should be taken
1. Walk around the tree and find the best location to view the top of the tree.
 Stand far enough away from the tree so that the top of the tree is less than 90 degrees above the line of sight. Measure total tree height
a. Always stand up-slope of the tree. Standing down-slope of the tree should only take place when no other option exists
 b. Using clinometer, measure the angle in % to top of the canopy of the tree (a %) c. Using clinometer, measure the angle in % to base of the tree (b %)
d. Using Laser Range Finder or measuring tape, measure distance from eye of person measuring tree to the tree (dis _{tree}) in meters. Be certain that the distance measured is horizontal and not along the slope. Record the horizontal distance to the nearest 0.01 meter
4. Repeat measurements in another location, thus measuring tree height in two locations.
5. If you are not able to stand far enough from the tree so that the top of the tree is less than 90% above you, then take the
measurements (a) and (b) in degrees (units on left side of clinometer). CAREFULLY NOTE ON THE DATA SHEET THE CHANGE IN LINITS! Tree beight must be calculated differently if degrees are used! ⁴
=

⁴ Sarah M. W et.al, 2012: Standard Operating Procedures for Terrestrial Carbon Measurement **19** | P a g e

Step 6 b measuring DBH

The following steps should be carried out in measuring the DBH:

- 1. Assign one person to record the data and all others should be measuring and marking trees. The recorder should stand in the center of the nested plot being measured. He or she should track those measuring the trees and should try and ensure that no trees are missed.
- 2. To avoid either missed trees or double recording, measurement should begin to the North and the first tree should be flagged. After a tree is measured, a chalk mark facing the center of the plot should be placed on tree to allow the person recording the data to track measured and unmeasured trees.
- 3. Count the number of saplings (defined as trees <5 cm DBH and >1.3 m tall) in the smallest plot (e.g. 2 meter radius plot) and record on data sheet. (After field data collection, the number of saplings will be combined with the average sapling weight to estimate total sapling biomass.
- 4. For temporary plots, trees should not be tagged. .
- 5. In **permanent** measurement plots, all trees of appropriate sizes for each nested plot should be tagged with the placement of an *aluminum* numbered tag and nail or alternatively fishing line or wire (see Figure below). The risk of theft of these materials must be considered
- 6. Measure the tree parameters required for the allometric equation to be used (e.g. DBH, DHB and H) for all trees of appropriate sizes for each nested plot. Steps for measuring DBH of all trees of appropriate sizes for each nested plot are described below. If other tree parameters are required for the allometric equation to be used, this SOP should be altered to explicitly describe the procedures to be followed. It is important that the diameter tape is used properly using the following steps to ensure consistency of measurements:
 - a. Record the name of the tree, based on tree naming system developed prior to field data collection.
 - b. **Tree Pole placement:** For each tree, place the Tree Pole (1.3 m plastic pole) against the tree to indicate the location of measurement (e.g. DBH). Placement of the Tree Pole depends on the slope of the ground, leaning angle of the tree, and shape of the tree bole
 - i. Slope: Always place tree pole and measure diameter on the upslope side of the tree
 - ii. Leaning tree: Always measure the height of a measurement (1.3 m) parallel with the tree, *not* perpendicular to the ground. Therefore, if the tree is leaning, measure underneath the lean, parallel with angle of tree. If a tree is not straight,

a tape measure must be used to measure the bole distance from ground to DBH.

- iii. **Dead tree**: If a tree is in dead class 1 mark as dead on data sheet. Trees are considered alive if there are green leaves present. Even if there are only one or two green leaves present the tree is considered alive. However, in deciduous forests during a season when trees drop their leaves (i.e. dry season) a branch or the stem must be cut to verify that the cambium is alive in order to determine if the tree is alive or dead.
- iv. **Multi-stem tree**: If the tree is multi-stemmed with forking below the point of measurement (e.g. 1.3 m), measure the diameter on each stem and tag the stems that exceed the minimum diameter for the nest. Record it as if each stem were a different tree on the data sheet, but with a note that the stems make up one tree.

Step 6 c Buttressed tree.

- 1. If the buttress is shorter than 1.3 m, measure the DBH at the standard (1.3 m) height.
- 2. If the buttress is taller than 1.3 m, measure the diameter at 30 cm above top of buttress. In cases where buttress is too tall and out of reach, the following procedure shall be followed:
 - i) Use portable retractable ladder and lean ladder against tree to allow for measurement of DBH 30 cm above from the top of the buttress.
 - ii) If ladder is unavailable, and taking into consideration the safety of field crew, climb the tree to take measurement 30 cm above the top of the buttress. In fluted buttress, it is possible to carve steps on the buttress itself to allow climbing to top of buttress. Extreme caution should be employed and climbing should only be performed when conditions are deemed safe by field crew leader.
 - iii) If ladder is unavailable, and climbing is considered unsafe, retractable poles should be use. Poles shall be placed against the tree, at the edge of its circumference, projecting the diameter at exactly 30 cm above top of buttress down to the ground. An observer is required to ensure poles are properly placed at the very edge of tree's circumference in a way that linear distance between poles represents the diameter of tree at 30 cm above end of buttress. The linear distance between the two poles shall be measured. At least two measurements shall be taken on opposite sides of tree using this method, and then averaged to estimate tree DBH.

Note: The distance between poles shall be measured linearly, and thus proper measuring tape shall be used. Poles can be made from tall saplings found outside the sampling plot in the forest or by linking Tree Poles together (e.g. with pvc connectors).

7. Diameter measurement: Tree diameter should be measured to the nearest 0.1 cm (e.g. diameter of 10.2 cm not 10 cm).

- i. If the diameter tape has a hook, push the hook into the bark of the tree slightly to secure it and pull the tape to the right. The diameter tape should always start left and be pulled right around the tree, even if the person taking the measurement is left-handed. As the diameter tape wraps around the tree and returns to the hook the tape should be above the hook. The tape should not come around the tree below the hook. The tape should not be upside down; the numbers must be right side up. (see Figure below)
 - b. If a liana or vine is growing on a tree that is going to be measured, do not cut the liana to clear a spot to measure the tree's diameter. If possible, pull the liana away from the trunk and run the diameter tape underneath. If the liana is too big to pull away from the trunk, estimate the diameter of the liana and subtract from total tree diameter. Cutting a liana from a tree should only be done if there are no other options. The same standard should be followed for any other type of natural organisms (mushrooms, epiphytes, fungal growths, termite nests, etc.) that are found on the tree.
- i. Place chalk mark on the tree to indicate to crew members that the tree has been measured.
- 8. **Other tree parameters:** Measure all other tree parameters included in the biomass regression equation to be used. If the allometric equation to be used requires height as an input for each tree/palm measured, two measurements of height should be taken to improve the precision of measurements, especially if it is difficult to identify the top of the tree/palm measured. See SOP Measurement of Height on how to measure tree height.
- 9. Boundary trees: Occasionally trees will be close to the border of the plots. The plots are relatively small and will be expanded to estimate biomass carbon on a per hectare basis. It is therefore important to carefully decide if a tree is in or out of a plot. To definitively determine whether the tree is in or out of the plot, use a tape measure to measure out from the plot center (or plot corner) to the base of the boundary tree. If the plot is on sloped ground, make sure the measurement follows the slope. If more than 50% of the base of the trunk is within the boundary of the nest, the tree is in. If more than 50% of the base of the trunk is outside of the boundary, it is out and should not be measured. If it is exactly on the border of the plot, flip a coin to determine if it is in or out.
- 10. When all of the trees in the plot have been measured, there should be a double-check to see that all of the trees have been measured.

Table 6.1 Forestry Sapling data collected (Trees 5 cm < DBH <10 cm are recorded in 20 m X 10 m subplot.)

Performance Indicators	Top Heig ht [m]	Tree numb er	Speci es name	Locati on along plot axis [m]	Locati on (Left m)	Locati on (Right m)	DB H (cm)	Heig ht of DBH (if not 1.3 m) [m]	Bole (heig ht) [m]	Us e	Quali ty	Heal th	Causat ive Agent	Sever ity	Orig in
District															
Chiefdom															
Village															
Ward															
Forestry ID															
Date(Day/Mont h/Year)															
Site Name															
Sample Plot Number															
Cluster Number															
Land use/Vegetation type section(LUVs Code)															
Location(GPS)															
Sample ID															
Stratum															
Plot slope on average (degrees)															

Easting(m)(UT															
M x coordinate)															
Northing(m)(UT															
M x coordinate)															
Altitude(m)(ab															
ove sea level)															
Table 6.2 Forestry Tr Performance Indicators	rees dat	ta collec	ted (Tre	es DBH Locati on along	> 10 cm ;	are recor	ded in DB	20 m) Heig ht of DBH (if not	<u>(50 m p</u> Bole	olot.)					
	Heig ht [m]	Tree numb er	Speci es name	plot axis [m]	on (Left m)	on (Right m)	H (cm)	1.3 m) [m]	(heig ht) [m]	Us e	Quali ty	Heal th	Causat ive Agent	Sever ity	Orig in
District															
Chiefdom															
Villago															
Date(Day/Mont h/Year)															
Site Name															
Sample Plot Number															
Land use/Vegetation															

Code)										
Location(GPS)										
Sample ID										
Stratum										
Plot slope on average (degrees)										
Easting(m)(UT M x coordinate)										
Northing(m)(UT M x coordinate)										
Altitude(m)(ab										
ove sea level) The table 6.3 below	should be fille	ed for Forest	try Regeneratio	on data collecte	ed (REGENER	ATION, S	SHRUBS	6 (DBH < 1	5 cm, l	live s
ove sea level) The table 6.3 below saplings, shrubs. Tick	should be fille (count.) Plot	ed for Forest radius = 4.99	try Regeneratic 9 m	on data collecte	ed (REGENER	ATION, S	SHRUBS	5 (DBH < 1	5 cm, l	live se
ove sea level) The table 6.3 below saplings, shrubs. Tick Performance	should be fille (count.) Plot	ed for Forest radius = 4.99	t ry Regeneratic 9 m Number of	on data collecte	ed (REGENER	ATION, S	SHRUBS	(DBH <	5 cm, I	live se
ove sea level) The table 6.3 below saplings, shrubs. Tick Performance Indicators	should be fille	ed for Forest radius = 4.99	try Regeneratic 7 m Number of similar	on data collecte Number of similar	ed (REGENER Number of similar	Number	SHRUBS	(DBH <	5 cm, I	live se Numb
ove sea level) The table 6.3 below saplings, shrubs. Tick Performance Indicators	should be fille count.) Plot	ed for Forest radius = 4.99	try Regeneratic 7 m Number of similar seedlings/ saplings	on data collecte Number of similar seedlings/	ed (REGENER Number of similar seedlings/	Number similar	SHRUBS	(DBH < Numbe similar seedling	5 cm, l	live se Numb simila
ove sea level) The table 6.3 below saplings, shrubs. Tick Performance Indicators	should be fille	ed for Forest radius = 4.99	try Regeneratic 9 m Number of similar seedlings/ saplings (DBH class	Number of similar seedlings/ saplings	ed (REGENER Number of similar seedlings/ saplings (DBH	Number similar seedling	SHRUBS	(DBH < Numbe similar seedling saplings (DBH c	5 cm, I	live so Numb simila seedli
ove sea level) The table 6.3 below saplings, shrubs. Tick Performance Indicators	should be fille count.) Plot	ed for Fores t radius = 4.99	try Regeneratic 9 m Number of similar seedlings/ saplings (DBH class [cm])	on data collecte Number of similar seedlings/ saplings (DBH class [cm]) >1.3m	ed (REGENER of similar seedlings/ saplings (DBH class [cm])	Number similar seedling saplings	SHRUBS r of gs/ s (DBH rml) 2-	(DBH < 1 Numbe similar seedling saplings (DBH cl [cm])	5 cm, I r of N gs/ s s s lass s 3- (live s Numb simila seedli saplin (DBH
ove sea level) The table 6.3 below saplings, shrubs. Tick Performance Indicators	should be fille (count.) Plot Species Name	ed for Fores t radius = 4.99 Number of similar seedlings	try Regeneratic 9 m Number of similar seedlings/ saplings (DBH class [cm]) <1.3m	on data collecte Number of similar seedlings/ saplings (DBH class [cm]) >1.3m and d<1	ed (REGENER of similar seedlings/ saplings (DBH class [cm]) 1–1.9	Number similar seedling saplings class [cr 2.9	SHRUBS r of gs/ s (DBH .m]) 2-	(DBH < similar seedling saplings (DBH cl [cm]) 3.9	5 cm, I r of gs/ s s s lass s 3- (live s Numł simila seedli saplin (DBH [cm])
ove sea level) The table 6.3 below saplings, shrubs. Tick Performance Indicators	should be fille count.) Plot Species Name	ed for Fores t radius = 4.99 Number of similar seedlings	try Regeneratic 9 m Number of similar seedlings/ saplings (DBH class [cm]) <1.3m	on data collecte Number of similar seedlings/ saplings (DBH class [cm]) >1.3m and d<1	ed (REGENER of similar seedlings/ saplings (DBH class [cm]) 1–1.9	Number similar seedling saplings class [cr 2.9	SHRUBS r of gs/ s (DBH :m]) 2-	(DBH < similar seedling saplings (DBH cl [cm]) 3.9	5 cm, I r of N gs/ s s s lass s 3- (live s Numb simila seedli saplin (DBH [cm])
ove sea level) The table 6.3 below saplings, shrubs. Tick Performance Indicators	should be fille (count.) Plot Species Name	ed for Forest radius = 4.99 Number of similar seedlings	try Regeneration 9 m Number of similar seedlings/ saplings (DBH class [cm]) <1.3m	on data collecte Number of similar seedlings/ saplings (DBH class [cm]) >1.3m and d<1	ed (REGENER of similar seedlings/ saplings (DBH class [cm]) 1–1.9	Number similar seedling saplings class [cr 2.9	sHRUBS r of gs/ s (DBH m]) 2-	(DBH < similar seedling saplings (DBH cl [cm]) 3.9	5 cm, I r of 8 s 5 lass 5 3- (live se Numb simila seedli saplin (DBH [cm])
ove sea level) The table 6.3 below saplings, shrubs. Tick Performance Indicators Chiefdom	should be fille count.) Plot Species Name	ed for Forest radius = 4.99 Number of similar seedlings	try Regeneratic 9 m Number of similar seedlings/ saplings (DBH class [cm]) <1.3m	on data collecte Number of similar seedlings/ saplings (DBH class [cm]) >1.3m and d<1	ed (REGENER of similar seedlings/ saplings (DBH class [cm]) 1–1.9	Number similar seedling saplings class [cr 2.9	sHRUBS r of gs/ s (DBH m]) 2-	i (DBH < 1 Numbe similar seedling saplings (DBH cl [cm]) 3.9	5 cm, I r of s s lass s 3- (live s Numb simila seedli saplin (DBH [cm])

Community Supervisor/Approver				
Date (Day/Month/Year)				
Site Name				
Sample Plot Number				
Cluster Number				
Land use/Vegetation type section (LUVs Code)				
Location (GPS)				
Sample ID				
Stratum				
Plot slope on average (degrees)				
Easting(m)(UTM x coordinate)				
Northing(m)(UTM x coordinate)				
Altitude(m)(above sea level)				
	 	· · · · ·		

ent of Bamboos	b. Measure the bamboo paramete height (using a clinometer), th measurements made will be de	ers required in t ne basal diamete pendent on the	he biomass regress er (using DBH tap factors included in t	ion equation devel e), and the numbe he allometric equa	oped. This would include r of culms in a patch. No ion used.	things such as ote: the exact					
	The following table should be used X 25 m	to fill in data fo	r Forestry Bamboo	Data collected BA	ИВОО (diameter > 5 cm)	Plot size: 20 m					
	Table 6.4										
	Performance Indicators										
			Status A=Alive ; D=Dead	Average Diamet [cm]	er Average height [0.5 m]	Number of stems in clump					
		Species name									
	Chiefdom										
	Farm ID										
	Name of person conducting Measurement										
	Community Supervisor/Approver										
	Date (Day/Month/Year)										
	Site Name										
	Sample Plot Number										
	Cluster Number										
	Land use/Vegetation type section (LUVs Code)										
	Location (GPS)										
	Sample ID										
	Stratum										

	Plot slope on average (degrees)												
	Easting(m)(UTM x coordinate)												
	Northing(m)(UTM x coordinate)												
	Altitude(m)(above sea level)												
		· · · · ·											
Step 8: Non-Tree Woody	 Identify which shrubs have stems originating from inside the area of the clip plot. These shrubs shall be cut at ground level. Any shrubs which have branches hanging into the plot but whose roots are located outside the area of the plot shall <i>not</i> be clipped and measured. 												
Vegetation Measurem	2. Weigh clipped vegetation vegetation when weighin	 Weigh clipped vegetation. If shrubs are being sampled separately from other non-tree vegetation, do not include non-tree vegetation, when weighing vegetation. Record the total weight of shrubs within the clip plot 											
ents	3. If there are no shrubs wi recorded on the data she	thin the clip plot area, the cli et as 'zero'.	p plots should <i>not</i> be move	ed. Instead the shrub bic	omass shall be								
	 Take a sub-sample of veg vegetation found within t 	etation. This should be a subs he total sample. Place vegeta	et of the total sample and s ion temporarily in a sample	hall be made up of a mix o bag.	of species and								
	5. Repeat steps 1-6 for the r	emaining three locations.		C C									
	6. Combine sub-samples int	o one sub-sample bag. Sample bag empty: Pecord w	sight										
	b. Combine the su	subsamples from all 4 subplots	into one subsample bag.										
	Weigh the subsample bag with the	subsample inside. Record th	e actual weight										
	 a. Label the subsample bag with the plot identification number, subsample identification number, and weight of subsample. b. Take the subsample bag and the subsample from field. Bring them to the laboratory and dry the subsample. Reweigh subsample. This subsample will be used to create a wet-to-dry ratio. This ratio will then be used to estimate the total dry weight of shrubs found within the clip plot. 												
	c. It is allowable for there to be a be placed in a location that allo	a delay between field data col ows air drying to occur.	lection and laboratory anal	ysis. However, cloth sam	ple bags must								
	1 adie 6.5												

	Sample ID #	Weight of bag or sheet (g)	Weight of bag + material (g)	Weight of subsample bag (g)	Weight of subsample bag + subsample material (g)	Area of Sample Plot (A) m ³	
Chiefdom							
Farm ID							
Name of person conducting Measurement							
Community Supervisor/Approver							
Date (Day/Month/Year)							
Site Name							
Sample Plot Number							
Cluster Number							
Land use/Vegetation type section (LUVs Code)							
Location (GPS)							
Sample ID							
Stratum							
Plot slope on average (degrees)							
Easting(m)(UTM x coordinate)							
Northing(m)(UTM x							

	coordinate)									
	Altitude(m)(above									
	sea level)									
	· · ·									
Step 9:	1. Identify all herbaced	ous vegetation that has	stalk base origir	nating from insid	le the area of the clip p	lot. This vegetation sha	ll be			
Herbaceou	cut at ground level.	Any vegetation which h	ave stems and	leaves hanging i	into the plot but whose	e base is located outside	e the			
S	area of the plot shal	I not be clipped and mea	isured.							
Vegetation	2. Weigh clipped vege	tation.								
	3. Any vegetation type	e that is being measured	l using another	method (e.g. pa	ilms, bamboo, non-tree	woody vegetation (shr	ubs),			
	and/or saplings) mu	ust not be included whe	en cutting and	weigning the h	erbaceous vegetation.	Record the total weigh	IT OT			
	nerbaceous vegetat	ion within the clip plot.	a alin nlataraa	the alia plate ch	auld natha mayod Inst	and the herberger hier				
	4. If there is no nerback	eous vegetation within t	he clip plot area,	the clip plots sh	ioula not de movea. Inst	ead the herbaceous bior	nass			
	5 Take a sub-sample	of vegetation This sho	uld ha a subset	of the total car	nnle and shall he made	up of a mix of species	and			
	vegetation found w	ithin the total sample P	ace vegetation t	temporarily in a	sample hag	up of a mix of species	anu			
	6. Combine sub-sampl	es into one sub-sample l	Dag.		sample bag.					
	a. Weigh th	ne subsample bag empty	. Record weight							
	b. Combine	e the subsamples from al	l 4 subplots into	one subsample	bag.					
	c. Weigh th	ne subsample bag with t	he subsample in	side. The weigh	t should be between 10	00- 300 g. Record the ad	ctual			
	weight.									
	d. Label th subsamm	e subsample bag with	the plot identif	ication number,	, subsample identificati	ion number, and weigh	it of			
	e Take the	subsample bag and the	subsample fro	m field. Bring it	to laboratory and dry t	he subsample. Reweigh	the			
	subsamp	le. This subsample will b	e used to create	a wet-to-drv ra	tio. This ratio will then t	be used to estimate the	total			
	drv weig	ht of non-woody vegeta	tion found with	in the clip plot.						
	7. Where plots a	re grouped in Clusters,	it is allowable fo	or samples from	all four plots to be co	mbined into one subsar	nple			
	sample.			-			-			
	8. It is allowable	for there to be a delay	between field da	ata collection ar	nd laboratory analysis. I	However, sample bags r	nust			
	be placed in a	location that allows air o	Irying to occur.							
	Table 6.6									

	Sample ID #	Weight of bag or sheet (g)	Weight of bag + material (g)	Weight of subsample bag (g)	Weight of subsample bag + subsample material (g)	
Chiefdom						
Farm ID						
Name of person conducting Measurement						
Community Supervisor/Approver						
Date (Day/Month/Year)						
Site Name						
Sample Plot Number						
Cluster Number						
Land use/Vegetation type section (LUVs Code)						
Location (GPS)						
Sample ID						
Stratum						
Plot slope on average (degrees)						
Easting(m)(UTM x coordinate)						
Northing(m)(UTM x						

	coord	inate)									
	Altitude(m)(abov										
	sea level)										
								-			
Step 10:	1.	If needed, remo	ove all veg	etation to all	ow litter to be co	ollected.					
Measurem	2. Collect all litter inside the frame. A knife can be used to cut pieces that fall on the border of the sampling frame. Place the										
ent of		litter on the pla	stic sheet	ing or tarp.							
Litter	3.	Weigh litter. Re	ecord the	otal weight c	f litter within th	e clip plot.					
	4.	If there is no lit	ter within	the clip plot	area, the clip pl	ots should <i>not</i> b	e moved. Instead the lit	ter shall be recorded on the			
		data sheet as 'z	ero'.								
	5.	Take a sub-sam	ple of litte	er. This shou	d be a subset of	f the total sampl	e and shall be made up	of a mix of litter types found			
		within the total	sample.	lace subsam	ole temporarily i	in a sample bag.					
	6.	Repeat steps 1	-6 for the	remaining thr	ee locations.						
	1.	Combine all fou	ir subsam	oles into one	subsample bag.	• • •					
		a. Wei	gh the sul	bsample bag e	empty. Record w	veight.					
		b. Con	nbine the	subsamples fi	om all 4 subplot	ts into one subs	ample bag.	100 000 D 111			
		c. Wei actu	gh the su Ial weight	bsample bag	with the subsan	nple inside. The	weight should be betw	een 100- 300 g. Record the			
		d. Labe subs	el the sub sample.	sample bag w	ith the plot ide	ntification numb	er, subsample identifica	ation number, and weight of			
		e. Tak	e the subs	ample bag an	d subsample fro	m field. Bring to	the laboratory and dry	the subsample. Reweigh the			
		subs	sample. Tl	nis subsample	e will be used to	o create a wet-t	o-dry ratio. This ratio w	ill then be used to estimate			
		the	total dry v	veight of litte	r found within t	he clip plot.					
	8.	Where plots are	e grouped	in Clusters, i	t is allowable fo	r samples from a	all four plots to be com	pined into one subsample.			
	9.	It is allowable f	or there t	o be a delay	between field d	ata collection a	nd laboratory analysis.	However, sample bags must			
		be placed in a l	ocation th	at allows air (drying to occur.						
	The following table should be used to fill in Forest Litter Data										
	Table 6	.7									

		Litter Weights from 0.5 x 0.5m quadrat (Litter Weight (grams))	Litter Weights from 0.5 x 0.5m quadrat (Litter Composite Sample Label)	Fine Coarse Woody Debris (diameter > 2cm and < 10 cm). Measure over bark. Plot size: Radius 3.99 (same plot as regeneration and shrubs) Diameter [cm]	Fine Coarse Woody Debris (diameter > 2cm and < 10 cm). Measure over bark. Plot size: Radius 3.99 (same plot as regeneration and shrubs) Length [m]	Fine Coarse Woody Debris (diameter > 2cm and < 10 cm). Measure over bark. Plot size: Radius 3.99 (same plot as regeneration and shrubs) Count similar parts	Fine Coarse Woody Debris (diameter > 2cm and < 10 cm). Measure over bark. Plot size: Radius 3.99 (same plot as regeneration and shrubs) Decay [code] Decay: S=Solid, R=fully/partially rotten
	Chiefdem						
	Forest ID						
	Name of person conducting Measurement						
	Community Supervisor/Approver						
	Date (Day/Month/Year)						
	Site Name						
	Sample Plot Number						
	Cluster Number						
	Land use/Vegetation type section (LUVs Code)						
	Location (GPS)						
	Sample ID						

	Stratum								
	Plot slope on average								
	(degrees)								
	Easting(m)(UTM x coordinate)								
	Northing(m)(UTM x coordinate)								
	Altitude(m)(above sea level)								
Step 11: Sampling Soil	 Remove all vegetation and litter from the sampling location. Because the carbon concentration of organic materials is much higher than that of the mineral soil, including even a small amount of surface material can result in a serious overestimation of soil carbon stocks. 								
Carbon	2. There are two options for sampling the soil: using a standard soil corer (option 1) or digging a small pit (option 2). Sampling forest soils with a standard soil corer can often present difficulties as the corer can hit roots frequently, which makes it difficult to extract a full core.								
	3. Option 1 – Soil core	r method							
	 a. Insert the soil corer/probe steadily to standard depth of 30 cm. b. If the soil is compacted, use a rubber mallet to fully insert. If the probe will not penetrate to the full depth, do not force it as it is likely that a stone/root is blocking its route and if forced the probe will be damaged. If blocked withdraw the probe, clean out any collected soil, and insert in a new location. c. If depth of soil at sampling point is less than standard depth measured, then the depth of the soil sampled must be recorded. 								
	d. Carefully ext	ract the probe and put	soil into a cloth bag. As	sign bag a unique ID	number.				
	e. To reduce va	riability, repeat steps a	-d at a total of 4 points	per sampling locatior	n / tree plot.				
	f. Mix all four s pieces of litt	samples thoroughly to a er and charcoal from sa	a uniform color and con amples at any sites	sistency. It is importa	ant to take specia	al care to remove			
	g. Place one thoroughly mixed subsample into a labeled sample bag. Ensure total weight of soil in bag is greater than								

	the minimum soil weight required by the soil laboratory (if soil is very wet, this should be taken into consideration in determining mass of soil contained in soil sample bag).
h.	For each sampling plot, take an additional two cores for determination of bulk density. When taking cores for measurements of bulk density, care should be taken to avoid any loss of soil from the cores.
i.	Therefore, each sampling plot (e.g. tree plot) will have three soil samples: 1 bag for soil carbon estimation, 2 bags for bulk density estimation.
4. Option	2- Soil pit method
Four sr	mall pits, one at each of the four sampling locations, will be dug and aggregated into one sample.
a.	Dig a soil pit 30 cm deep, making sure that one of the walls is perpendicular to the soil surface. A folding entrenching shovel (military type, with a flat shovel) is usually light and versatile for digging the pit, however any digging instrument can be used.
b.	Using the shovel take a slice of soil from one of the walls of the soil pit. The slice should be uniform throughout the 30 cm profile, i.e. an equal amount of soil should be collected from the first 15 cm as the last 15 cm. Soil carbon usually decreases with depth, and if the slice collected contains more soil from the top of the pit versus the bottom the soil carbon estimate will be biased.
С.	Repeat steps a-c at the other 3 sampling locations.
d.	Mix all four samples thoroughly to a uniform color and consistency. It is important to take special care to remove pieces of litter and charcoal from samples at any sites.
e.	Place one thoroughly mixed subsample into a labeled sample bag. Ensure total weight of soil in bag is greater than the minimum soil weight required by the soil laboratory (if soil is very wet, this should be taken into consideration in determining mass or soil contained in soil sample bag).
f.	For each sampling plot, two estimates of bulk density shall be taken using a bulk density ring. This should take place at 2 out of the 4 sampling locations.
	 After removing the soil for carbon measurements, place the bulk density ring over the mid-point of the soil pit. This would normally be at 15 cm.
Cover the ring v	vith a piece of wood and hammer the ring into the side of the soil pit (avoid compacting the soil).
	I. When the ring is flush with the side of the soil pit dig around the ring until the soil ring can be removed along with all the soil inside. If soil falls out of the ring, the process must be repeated.
	ii. Carefully place the soil contained in the bulk density ring into a sample bag and label

- j. Therefore, each sampling plot (e.g. tree plot) will have three soil samples: 1 bag for soil carbon estimation, 2 bags for bulk density estimation.
- 5. It is allowable for there to be a delay between field data collection and laboratory analysis. However, sample bags must be placed in a location that allows air drying to occur.
- 6. Promptly send soil samples to a professional lab for analysis.

The following table should be used to fill in data on **soil carbon**

Table 6.8

Chiefdom Forest ID Name of person conducting	Sampling Depth (cm)	Sampling method(Coring or open pits)	Soil bulk density (Grams/cm3)	Carbon concentration (%)	soil mass (M)	total volume (Vt)
Measurement Community						
Supervisor/Approver						
Date (Day/Month/Year)						
Site Name						
Sample Plot Number						
Cluster Number						
Land use/Vegetation type section (LUVs Code)						

36 | Page
	Location (GPS)								
	Sample ID								
	Stratum								
	Plot slope on average (degrees)								
	Easting(m)(UTM x coordinate)								
	Northing(m)(UTM x coordinate)								
	Altitude(m)(above sea level)								
Step 12:	Each standing dead trees sl	hould be classifi	ed into two classes :	ture average for above			ما م به ما		
ent Of	not deciduous)	anches and twig	s and resemples a live	tree except for abse	fice of leaves (make sure th	ee is dead	u anu		
Standing	Class 2: Trees ranging from	those containii	ng small and large bran	ches to those with bo	le only				
Dead	By classifying trees into the	ese two simplifie	ed classes, a conservati	ve estimate of bioma	ss will be taken.				
Wood									
	Class 1 trees.								
	 Follow the same measurement protocols as for the measurement of live trees, including the measurement of tree variables (e.g. DBH, H) (see SOP Measurement of Trees). If species/genus specific allometric equations require different field measurements, rules must be included in this SOP stating which field measurements will be made for which type of dead tree (for example – for all Class 1 dead trees, the 'other' tree allometric equation will used and DBH of dead trees will be measured.) If nested plots are used, only dead trees of the appropriate size (e.g. DBH) should be measured for each nest. Mark tree as 'Dead' on datasheet. 								
	Class 2 trees (see Figure be	low):							
	1. The biomass of these to density.	rees is based or	n estimating the volum	e of the remaining tre	ee and multiplying the volu	me by the	e wood		
	2. Measure DBH using m	nethods for live	e trees. If nested plot	2. Measure DBH using methods for live trees. If nested plots are used, only dead trees of the appropriate DBH should be					

measured for each nest.

- 3. Measure the diameter at the base of the tree. (D_{base})
- 4. Measure height of stem (H) either using a clinometer and measuring tape or laser range finder (see SOP Measurement of tree height) or through direct measurement using tape measure (e.g. when dead wood is less than 2 m high)
- 5. Measure diameter at top of stump (**D**_{top}) either through direct measurement (e.g. when diameter at top can be reached directly) or through the use of a relascope. Alternatively, do not take a measurement at the top of the stump and write 'None' or 'NA' on datasheet.

The following table should be used to fill in data for Forestry Stump data collected (diameter > 10 cm). Measure over bark) Plot size: 20 m X 50 m - NOTE THAT STUMP DATA IS COLLECTED OVER THE ENTIRE PLOT LENGTH Table 6.9

	Species name	Location (Left m)	Location (Right m)	Diameter(cm)	Height (cm)	Years (Code)	Diameter at the base (cm)	Diameter at top of stump (cm)
Chiefdom								
Forest ID								
Name of person conducting Measurement								
Community Supervisor/Approver								
Date (Day/Month/Year)								
Site Name								
Sample Plot Number								

	Cluster Number								
	Land use/Vegetation type section (LUVs Code)								
	Location (GPS)								
	Sample ID								
	Stratum								
	Plot slope on average (degrees)								
	Easting(m)(UTM x coordinate)								
	Northing(m)(UTM x coordinate)								
	Altitude(m)(above sea level)								
Step 13 Measurem ent of Lying Dead Wood	 tep 13 Measurem nt of ying Dead Vood Dead wood is grouped into three dead wood classes: sound, intermediate, and rotten. Prior to field measurements, samples of each dead wood class shall be collected for demonstration purposes. So that consistent measurements are made throughout samplin all field members must be trained on what type of dead wood will be considered in each class. 1. Starting at the tree plot center (or the sampling point when lying dead wood measurements are not associated with tree plots), determine a random compass bearing. This can be done using various methods such as using a rando number table. Another method is to use a watch that has a second hand. At a random moment one individual can loc at his/her watch and then the direction the second hand is facing will be used as the compass bearing. 2. Using the compass bearing, walk 100 paces from the plot center. (For permanent tree plots, sampling must take place outside the tree plot boundary. For temporary tree plots, the sampling can take place within the tree plot boundary. 3. Walk 5 more steps (These additional steps reduce bias in choosing the sampling location) 								
	4. Lay out two angle as abc lines should	50 m lines ove and pla not overla	at right angl ce the othe p or cross ir	es outside plot r line at right a nto tree plot.	. Determine the ngle to first. If n	direction of ecessary, 4 2	the first line using 25 m lines can be	same random laid out. How	compass ever, the

5. Along the le Calipers wo to place a ta are going to placing you	Along the length of the line, measure the diameter of each intersecting piece of coarse dead wood (\geq 10 cm diameter). Calipers work best for measuring the diameter. When measuring the diameter of dead wood it is not always possible to place a tape around the log. It can also be dangerous because logs are usually home to snakes, spiders, etc. If you are going to measure the diameter of the piece of dead wood with a diameter tape, make sure the route is clear before placing your hand underneath the log.										
6.	6.										
A piece of dead wood sh at least 50% of the diam	ould only be mea eter of the piece	asured if: (a) more —see figures belo	than 50% of the low. Some examples	og is aboveground, a s are displayed in the	and (b) the sampl e Figure below.	ing line crosses through					
7. If the log is estimates is	7. If the log is hollow at the intersection point, measure the diameter of the hollow; the hollow portion in the volume estimates is excluded.										
8. Assign each piece of dea (bounces of classify it as crumbly, cla	8. Assign each piece to one of three density states: sound, intermediate, or rotten. To determine what density class a piece of dead wood fits into, each piece will be struck with a machete. If the machete does not sink into the piece (bounces off), classify it as sound. If the machete sinks partly into the piece, and there has been some wood loss, classify it as intermediate. If the machete sticks into the piece, if there is more extensive wood loss, and the piece is crumbly, classify as rotten. Record on data sheet.										
9. The volume wood and t	of lying dead w he length of the l	ood and then cai line transect.	bon stocks will be	e estimated using th	e diameters of e	each piece of					
The following table shou cm) Plot size: 20 m X 5 LENGTH Table 6.10	The following table should be used to fill in data for Forestry deadwood data collected FALLEN DEADWOOD (diameter > 10 cm) Plot size: 20 m X 50 m -NOTE THAT DATA ON FALLEN DEADWOOD IS COLLECTED OVER THE ENTIRE PLOT LENGTH										
	Species name	Diameter 1 [cm]	Diameter 2 [cm]	Length (m)	Count similar parts	Decay [code]					
Chiefdom											

	Forest ID						
	Name of person conducting						
	Measurement						
	Community Supervisor/Approver						
	Date (Day/Month/Year)						
	Site Name						
	Sample Plot Number						
	Cluster Number						
	Land use/Vegetation type section (LUVs						
	Location (GPS)						
	Sample ID						
	Stratum						
	Plot slope on average (degrees)						
	Easting(m)(UTM x coordinate)						
	Northing(m)(UTM x coordinate)						
	Altitude(m)(above sea level)						
Step 14: Measurem ent and	Collect wood samples for each density class for density determination (dry weight per green volume). The number of wood samples will depend on the variability between tree species within the forest. A minimum of 10 samples should be collected for each density class of each species group. For example, for a forest containing mixed broadleaf and palm species , a minimum of 10 samples of						
Estimation dead wood from each tree group should be collected per density class—for a total number of 30 samples for broadleaf spec						dleaf species and	

41 | Page

of Dead	30 for palms.
Wood	1. For sound class of dead wood:
Density	a. Using a chainsaw or a handsaw, cut a complete disc from the selected piece of dead wood.
Classes	b. Measure the diameter (L1 and L2) and thickness (T1 and T2) of the disc to estimate volume (Figure below). The dimensions of the sample should be recorded on data sheet. The fresh weight of the disc does not have to be recorded.
	c. All samples shall be placed in a labeled cloth bag.
	d. Samples shall be stored in location in manner that allows for air drying to take place prior to laboratory measurements.
	e. This sample will then be taken to the laboratory
	2. For intermediate and rotten classes:
	a. Collect a contiguous sample of the dead wood that is not too small nor too large (i.e. that fit in the graduated cylinder).
	b. Place sample in a bag, label the bag. Make sure sample doesn't break into smaller pieces when transporting it. If the sample is very crumbly, it can be placed on a piece of clear plastic wrap (e.g. cling wrap as used in food storage), and tightly wrapped around the piece of wood.
	c. This sample will be taken to the laboratory. Carefully transport sample to laboratory where it volume will be measured.
	3. Train all field crew members on how different pieces of dead wood are should be classified, based on the sampling that was conducted.
Step 15: Measurem ent Of Canopy	To measure canopy cover, measurements of presence or absence of canopy cover will be made at different points within a square sampling plot. These sampling plots do not need to be located in association with tree plot measurements. The location of each sampling location must be determined prior to entering the field.
Cover	1. Navigate to sampling location using a GPS.
	2. Walk an additional 10 steps in the direction of travel. This will be the first sampling point.
	3. Starting at this point, determine a random compass bearing. This can be done using various methods such as using a random number table. Another method is to use a watch that has a second hand. At a random moment one individual can look at his/her watch and then the direction the second hand is facing will be used as the compass bearing.

	4. Using this compass bearing, lay out a 15 m transect.
	5. A measurement of the presence/absence of canopy will be made every 3 m along this transect.
	6. Starting at 0 cm, use the Densitometer to determine the presence/absence of vegetation.
	Looking through the densitometer you can see two spirit levels. When both are centered you are looking directly overhead. In the center of the field of vision there is a small circle. If you can see vegetation (leaves, branches, twigs, etc.), mark the data sheet to indicate the presence of canopy cover.
	7. Move forward 3 m and repeat until reaching 15 m (6 recordings)
	 Move tape measure 3 m to your right and repeat measurements along transect. Move tape measure 4 more times until 6 transects have been completed. A total of 36 presence/absence measurements should be taken at each sampling location.
Step 16: Area of Canopy	 Once the logging gap has been identified, walk around the area to determine how many felled timber trees are located within the specific logging gap. The felled timber trees and all killed and/or damaged trees caused by tree felling will be measured as one logging gap plot. Measurements must be taken for each felled timber tree.
Opening	Locate the stump and crown of each felled tree. Be sure to verify that the crown is from the selected stump by determining the angle of the tree fall, species and distance from stump.
	3. Walk around the entire gap, locating every section of canopy gap formed. Mentally divide the gap into different non-overlapping ovals or rectangles. Shapes must either be either: oval, circle, rectangle or square. They cannot be complex shapes unless detailed angles are taken). Draw shapes onto data sheet.
	 Measure and record the length and width of each shape with either the Range Finder or the tape measure. Remember – to measure the area of an oval one must measure diameter of major axis and minor axis.
Step 17: Tree Crown Area from the	This is used to estimate the crown area of a tree. These measurements are used for specific purposes including formulating relationships between tree biomass and crown area for use in aerial imagery analysis. The purpose of the field measurements must be clearly delineated and a sampling design created prior to implementation of this SOP. The sampling design must include steps for determining which trees will be measured.
Ground	 For each tree to be measured, measure the DBH and species of tree using the procedures in SOP Measurement of Trees.

	2. At each tree a. For e is no Using b. Use t in me	 2. At each tree to be measured a total of four measurements of the angle and distance to canopy should be taken. a. For each cardinal direction stand with your back to the tree trunk. If clearer sight of the first branch with leaves is not aligned with a cardinal direction, be sure the subsequent three sides are perpendicular to each other. Using the clinometer, estimate the angle in degrees to the first branch with leaves (∠1). b. Use the range finder, measure the distance from the eye of the person measuring the trunk to the branch (d1) in meters. Be certain that the distance measured is horizontal and not along a slope. 					
Step 18 Fire measurem ents	Chiefdom Forest ID Name of person conducting Measurement Community Supervisor/Approver	Fire occurrence ⁵	Fire Area (ha)	Fire type(severity) ⁶			

⁵ 0 There is no evidence of fire
1 Evidence of fire during the current year
2 Evidence o fire during

⁶ 1. Unburned / Very Low

2. Low

3. Moderate

4. High

5. Very high

	Date (Dav/Month/Year)				
	Site Name				
	Sample Plot Number				
	Cluster Number				
	Land use/Vegetation type section (LUVs Code)				
	Location (GPS)				
	Sample ID				
	Stratum				
	Plot slope on average (degrees)				
	Easting(m)(UTM x coordinate)				
	Northing(m)(UTM x coordinate)				
	Altitude(m)(above sea level)				
Step 19: Data	Sub-Step 6a. After the da analysis.	ta collection is	completed, the N	MRV Coordinator en	sures data is well compiled and archived in readiness for
assembly	Sub-Step 6b. The MRV Co	ordinator check	s that all necessa	ary data and sample	information is archived and included in the final database.

5.0 SOP DATA ANALYSIS-BIOPHYSICAL ASSESSMENTS

Procedure

Tree Plots/Sub- plots-Extrapolation to Hectare	Follov full he Extra by a g	Following field data collection, during data analyses, any measurements taken at the plot level are extrapolated to the area of a full hectare to produce carbon stock estimates on a 'per hectare' basis. Extrapolation is done by the use of scaling factors that are calculated as the proportion of a hectare (10,000 m2) that is occupied by a given nested plot or clip plot: $Scaling Factor = \frac{10,000m^2}{Horizontal Area of Nest (m^2)} \dots 7.1$								
Data Analysis for	Table	6.11 Above ground biomass for tress AGB tree								
Above Ground Biomass		DBH (cm) from Table 6.2	H(tree height) m From Table 6.2	ABG tree=0.112*(p*D2*H) ^{0.916}						
	1									
	2									
	3									
	n									
	Table	6.12 Above ground biomass for Sapling AGB saplin	ng							
		DBH (cm) from Table 6.1	H(tree height) m From Table 6.2	ABG _{sapling} =0.112*(<i>p</i> *D ² *H) ^{0.916}						
	1									
	2									
	3									
	n									
	Table	e 6.13 Above ground biomass for Sapling AGB pole								

	DBH (cm) from Table 6.3	H(tree height) m From Table 6.3	ABG pole=0.112*(p*D ² *H) ^{0.916}
1			
2			
3			
n			

Table 6.14 Above ground biomass for AGB bamboo

	DBH (cm) from Table 6.4	H(tree height) m From Table 6.4	ABG _{bamboo} =0.112*(p*D ² *H) ^{0.916}
1			
2			
3			
n			

Table 6.15 Above ground biomass for Sapling AGB understory

		from table	e 6.5)	
1			-	ABG understory=0.112*(p*D ² *H) ^{0.9}
2				
3				
n				

$C(LU) = C(AGTB)+C(AGPB)+C(AGSB)+C(AGUB)+C(L)+C(WN)+SOC^{7}$ where, C(LU) = carbon stock density for a land-use category [ton ha-1]; $C(AGTB) = carbon in above ground tree biomass [ton ha-1];$ $C(AGPB) = carbon in above ground pole biomass [ton ha-1];$ $C(AGSB) = carbon in above ground sanling biomass [ton ha-1];$									
	C(AGUB) = carbon in above ground under storey biomass [ton ha-1]; C(L) = carbon in litter [ton ha-1]; C(WN) = carbon in woody necromass [ton ha-1]; SOC = soil organic carbon [ton ha-1]. The total carbon stock is then converted to tons of CO2 equivalent by multiplying it by 44/12, or 3.67 (Pearson et al								
	AGB _{tree}	AGB _{pole}	AGB _{sapling}	AGB _{Bambo}	AGB _{understory}	AGB _{total} = (AGB _{tree} + AGB _{pole} + AGB _{sapling} + AGB _{Bambo} + AGB _{understory})			
	According to ⁸ , the allometric equations for biomass usually consist of information on trunk diameter at breast height DBF cm), total tree height H (in m), and wood-specific gravity (in g/cm ³). Ignoring variations in wood density results in poor predict of the stand. Wood-specific gravity is hence an important predictive variable in the regression model.								
	The choice of	of the best pr	edictive allome	etric equations (models) in estim	nating the stand is developed by ⁹ Chave et al. (2005) on			

 ⁷ Wayan S. D et.al, 2010: Standard Operating Procedures for Field Measurement
 ⁸ Wayan S. D et. al, 2010: Standard Operating Procedures for Field Measurement

⁹ Chave, J., et al. (2015), Improved Allometric Models to Estimate the Above Ground Biomass of Tropical Trees; Global Change Biology

the basis of climate and forest stand types. Equation (a) is good for moist forest stand, equation (b) for dry forest stand, and
ABG = $0.0509 * \rho D2 H$ 7.2 ¹¹
ABG=0.112 * (ρ D2 H)0.916
AGB = 0.0776 * (ρ D2 H)0.9407.4
where,
ABG = above ground biomass [kg]; p = wood specific gravity [g cm-³];
D = tree diameter at breast height [cm]; and
After taking the sum of all the individual weights (in kg) of a sampling plot and dividing it by the area of sampling plot for trees (2000 m ²) and saplings poles (500 m ²), the biomass stock density is attained in kg m- ² .
This value can be converted to ton/ha by multiplying it by 10.
The biomass stock density of a sampling plot will be converted to carbon stock densities after multiplication with the IPCC (2006) default carbon fraction of 0.5.
Before a specific equation is used, it is good practice to test whether the equation can be applied by taking a small number of
empirical measurements and comparing the predicted outcome with the measured outcome. How the established allometric equation fits new observations can be tested using a reduced Chi-Square goodness-of-fit test. This test analyzes whether the variability between predicted biomass values and true biomass values is equal to the 'natural'
variability in biomass values (Subedi et al., 2010)

¹⁰Wayan S. D et. al, 2010: Standard Operating Procedures for Field Measurement ¹¹ Wayan S. D et. al, 2010: Standard Operating Procedures for Field Measurement

of an Individual	a given dead tree.					
Standing Dead Tree	To estimate the biomass of an individual standing dead tree, the estimated volume is multiplied by the average density calculated					
	for 'sound wood'					
	Ontion 1: Diameter at ton (Dton) was measured directly:					
	Volume estimated assuming tree is a truncated cone:					
	Volume= $(\pi \times \text{Height})$. (D ² base+ (D base . D top) + D ² top)7.6					
	12					
	2. Option 2: Diameter at top (Dtop) was measured using a Relascope:					
	Volume estimated assuming tree is a truncated cone:					
	Volume= $(\pi \times \text{Height})$. (D ² base+ (D base . D top) + D ² top)7.7					
	12					
	Option 3: Diameter at top (Dtop) estimated using taper equation					
	Dtop=Dtop- (H. (<u>D top-DBH)</u>					
	130.100					
	Volume estimated assuming tree is a truncated cone:					
	Volume= <u>(π×Height)</u> . (D² base+ (D base . D top) + D²top)					
	12					
	Option 4: Diamator at top (Dtop) is assumed to be zero. Volume estimated assuming tree is a const					
	Option 4. Diameter at top (Dtop) is assumed to be zero. Volume estimated assuming tree is a cone:					
	Volume= 1/3. π. <u>(Dbase)</u> ² . H					
	$\frac{1}{2}$					

Analysis for Trees	Input Data
,	Variables: Species, tree health (live status; health<5:living tree; health=5:dead tree), diameter at breast height dbh in cm, top
	height H in m, bole height Hbole in m
	Parameters: Root to Shoot (RS) -0.28 and C fraction of dry matter (CF) -0.49 ¹²
	Tree Top Height
	$H=1.3+dbh^{2}/(a+bd)^{2}$
	Note: Height Model regression parameters a and b computed by clusters. ¹³
	Polo Volumo
	Bole volume 7.12
	Stem Volume
	$V=0.67^* pi^* (0.01^* dbh/2)^{2*}$ H
	Above Ground Biomass
	AGB=exp(2.342*LN(dbh)-2.059)/10007.14
	Below Ground Biomass
	BGB=AGB*RS7.15
	Total Biomass in Trop
	RM = ACR + RCR 7.16
	Above Ground Carbon
	AGC=CF *AGB
	Below Ground Carbon

¹² Intergovernmental Panel on Climate Change (IPCC) (2006). Agriculture, Forestry and Other Land Uses, 2006 IPCC Guidelines for National Greenhouse Gas Inventories.

¹³ GRZ (2014) ILUA-II Data Processing for Biophysical Assessment, Zambia.

	BGC=CF*BGB7.18
	C = A C C + B C C
	14
Laboratory Measurements and Data Analysis for Dead Wood Density	 Dry Weight: Place samples in drying oven at 70o C until sample reaches constant weight (i.e. all moisture is evaporated). Record the dry weight (g). 2. 2. Volume: If the wood disc sampled from the field is a regular shape (e.g. circular disk) the 'calculated volume' method below can be used. If the wood disc is an irregular shape, the 'water displacement volume' method shall be used. a. Calculated Volume Estimate Method: i. Calculate the volume using the measurements taken in the field
	Volume= $\pi \times ((\underline{Diameter 1 + Diameter 2}) /2)^2 \times \underline{Width 1 + Width 27.20}$ 2
	Where: Volume = Volume of sample;cm3 Diameter1 = First diameter of sample; cm Diameter2 = Second diameter of sample; cm Width1 = First width of sample; cm Width2 = Second width of sample; cm ii. Calculate density using the following formula: Density = Dry Weight
	Volume Where:
	Density = Density of sample; g/cm3
	Volume = Volume of sample; cm3
	Dry Weight = measured dry weight of sample; g

¹⁴ Abbreviations used in the calculations (ILUA, 2014): AGB = above-ground biomass BGB = below-ground biomass AGC = above-ground carbon BGC = below-ground carbon BGC = belo

	iii. Calculate the mean the density for that wood density class.					
	 b. Water Displacement Method: The most commonly used technique to measure the volume of irregularly shaped of i. Create a subsample from the wood sample brought from the field. This subsample must fit inside the graduated cylin used. ii. Weigh the subsample created and record weight. iii. Fill the graduated cylinder to a known volume (e.g. 1L). Make sure there is enough water to submerge the piece a empty room in the graduated cylinder to allow water to rise without spilling over. iv. Place dead wood sample inside the graduated cylinder. v. Using the very fine elongated needle, push sample under the water until completely submerged. Make sure wat spill over or rise above the last milliliter marking on the graduated cylinder. vi. On the data sheet, record the volume of water displaced by submerging the sample. That is the volume of the collected. vii. Calculate density using the following formula: 					
	Volume					
	Where: Density = Density of sample; g/cm3 Volume = Volume of sample; cm3 Dry Weight = measured dry weight of sample; g c. Calculate the mean the density for that wood density class					
Woody Necromass	Total dry weight = <u>sample dry weight</u> x total fresh weight					
(Dead Organic Matter)	sample fresh weight					
Data Analysia (Carbon content = 0.5 x total dry weight					
Non tree woody	After taking the sum of all the individual weights (in kg) of a sampling plot and dividing it by the area of a sampling plot for					

vegetation	woody necromass (0.25 m ²), the biomass stock density is attained in kg m- ² . This value can be converted to ton/ha by multiplying it by 10. The biomass stock density of a sampling plot will be converted to carbon stock densities after multiplication with the IPCC (2006) default carbon fraction of 0.5 ¹⁵ .							
Data Analysis for	Table 6.17 Biomass Litter							
Litter	weight of the fresh field sample of oven-dry sample of field fresh) -Derived from 6.7 weight of the sample of field fresh) Derived from table 6.7 weight of the fresh sample of litter (W wet sample) Derived from table 6.7							

 ¹⁵ Wayan S. D et. al, (2010) Standard Operating Procedures for Field Measurement
 55 | P a g e

	Fresh samples are weighed in the field with a 0.1 gr precision; and a well-mixed sub-sample is then placed in a marked bag.A sample is taken to the laboratory and oven dried until constant weight to determine water content.For the amount of biomass per unit area is given by: $WL = \frac{W \text{ field fresh}}{P} \frac{x}{W \text{ dry sample}} \frac{x}{10000} \frac{17.23}{10000}$ where:WL = biomass of litter (t ha-1);W field fresh = weight of the fresh field sample of litter, destructively sampled within an area of size P [g];P = size of the area in which litter were collected [ha];W dry sample = weight of the oven-dry sample of litter taken to the laboratory to determine moisture content [g] ¹⁶ .							
Data analysis for Stumps	Table 6.18 Biomass for S	tump stump diameter (Dstump) derived from Table 6.9	stump height (Hstump) derived from Table 6.9	AGB (Equations 731 and 7.32)	BGB (Equation 7.37)	Total Biomass Stump (BMstump)		

 ¹⁶ Wayan S. D et. al, (2010)Standard Operating Procedures for Field Measurement
 56 | P a g e

Estimate the breast height diameter of the tree before felling in order to be able to compute its below-ground biomass. Note: A model to estimate dbh as a function of stump diameter and stump height ¹⁷ Input Data Variables: Species, stump diameter (Dstump) in cm and stump height (Hstump) in cm Parameter: drywood density factor (WD) -619kg/m ³ Derived variables: Estimated diameter at breast height (est_d) –computed with a model using NAFORMA data from Tanzania where 32000 live sample trees used in a data analysis:								
Calculation								
Diameter at 1.3 m Est_dbh= D stump+0.385	524*(1.3-Hstum	p)-0.20325*1.3-	Hstump)*Dstum	p	7.28			
Ground level diameter (D0=(est_ dbh -0.38524*	IO) 1.3)/ (1- 0-0.20	325*1.3)			7.29			
Stump Volume above gro Computed with a cylinde V_AG=(pi*(d0/200) ² +pi* (l	ound (V_AG) r model betwee Dstump/200)²)/	en Om up to Hstu 2* Hstump	ımp		7.30			

¹⁷ The model to estimate dbh as a function of stump diameter and stump height is based on data from NAFORMA, Tanzania (Vesa 2013, unpublished). The model is based on data from 32 000 living sample trees recorded in forest land plots in Tanzania. The variables in the modeling data were as follows: dbh, stump level diameter, and stump level height.

Volume and Biomass for tree Computed similarly as for tree	pefore felling		
AGB=V_AG*WD/1000			
=V AG*619/1000			
AG biomass of stump Computed with the help of dr	y wood density factor		
Top Height <i>Hf=1.3+est_dbh²/(a+b*est_d)²</i>			
Where a and b are height mod	el regression parameters cor	mputed by clusters	
Stem Volume Vf=0.67*pi*(0.01*est_dbh/2) ² *	-If		
Stem Volume Removal Vrem=Vf-V_AG		7.35	
AG Biomass AGBF=exp(2.342*LN (est_dbh)-	2.059/1000		
Below ground Biomass BGB= AGBf*RS			
Stump Total Biomass BMstump=AGB+BGB		7.38	
Stump Total Carbon			

	Cstump=CF*BMstump					7.39			
Data Analysis for lying Dead Wood	Table 6.19 Lying Dead wood								
.,		Length (m) Derived from Table 6.10	Diameter 1 [cm] Derived from Table 6.10	Diameter 2 [cm] Derived from Table 6.10	Dead Wood Volume (V_DW)(equatio n 7.40) applying equations 7.42 and 7.43 for decayed or solid dead wood	Deadwood Biom 7.41	ass (equation		
	Input data: Variables: Diameter (D1 and D20) in Deal wood length (L) in c Decay status (solid or par Count of similar particles Conversion factors Dry wood density factor Derived Variables Volume (V_DW)-Comput Biomass (AGB_DW)-Com Carbon (C_DW)- Comput	n cm m tially/fully ro (WD) 619kg/ ed with a cyli puted with the ed with the l	tten) m ³ nder model ne use of wood o nelp of C from b	density factor. Do	ecayed dw is 50% o	of biomass of solid o	dw.		

	Calculation							
	Calculation							
	Deadwood Volume V_DW=pi * ((D1/200) ² +p	oi*(D2/200) ²)/2)'	*L				7.40	
	Deadwood Biomass							
	AGB_DW=V_DW/1000.			••••••			••••••	7.41
	$V_DW^*=619/1000$ for $F_00/(*)/(D)W(*/40/1000)$	or solid dw			•••••	•••••		7.42
	20% V_DW 019/1000	for decayed	a aw	•••••	••••••	•••••	••••••	7.43
	DW Carbon							
	C DW=CF*ABG DW							7 44
Total Deadwood and Litter Biomass								
	Table 6.20. Total Deadwo	bod and litter	Deed	Cturner /Tata		1 :++ /-	Fable (17)	Total Dood wood and
		Lying wood(total) Tak	Dead	5tump(10ta	ii) Table	Litter (able 0.17)	Litter(toppes/bectare)
	1			0.10				Enter (tormes/ neetare/
	2							
	3							
	4							
Data Analysis for Soil Organic Carbon	Soil Organic Carbon		-					
	(%	C) carbon	(dp)	The total	(ρ) soil	bulk	(SOC) Soil orga	nic
	CO	ncentration [%].	depth a	at which the	density [g	cm-3];	carbon stock	ber
	De	rived from table	sample	was taken	Derived from	m table	unit area (t ha-	1);
	0.0)	tabla 6	g	0.0		Equation 7.45	
	1			0				—
	2							
	3							

60 | Page

	4					
	Soil samples from ea measurement by rem	ch of the three dept oving stones and pla	hs are composted an nt residue > 2mm as	nd well-mixed per sa well as by grinding.	mpling plot and then	prepared for carbon
	The carbon stock der	nsity of soil organic ca	arbon is calculated as	(Pearson et al., 2007):	
	SOC = ρ x dp x %C			7.4	15	
	Where:					
	SOC = Soil organic ca	arbon stock per unit a	rea (t ha-1);			
	ρ = soil bulk density	g cm-3];				
	dp = the total depth at which the sample was taken [cm]; and					
	%C = carbon concent	ration [%].				
Peliability Estimates	Peliability estimates :	are only computed fo	r trees on the forest l	and The variable of i	nterest is only the me	an volume (in m ³ /ba)
Kenability Estimates		are only computed to	i trees on the forest h		The lest is only the mea	
	Ratio estimator for m	ean volume of forest	: (m³ /ha) is computed	l as follows:		
	where					
	n = number of cluste	rs (in forest land),				
	xi = sum of plot secti	ons' volumes (m3) in	cluster i,			
	pi = area of plot secti	ons in forest in cluste	er I (in ha).			

Variance of the proportion estimates, with clusters of unequal size (variance of ratio estimator), is as follows:

```
\sum \sum = \cdot - - = \cdot \operatorname{niiiinx} px n n p x 1 2 2 () 1 () 1 var()
```

where n = number of clusters (in forest land),

xi = sum of forest plot sections' volumes (m3) in forest in cluster i,

```
pi = sum of plot section areas in forest in cluster i (in ha), x = forest mean
```

volume estimate (in m³ /ha).

The other estimates are computed as follows:

•	Standard error (m ³ /ha):	SE = var(x)
---	--------------------------------------	-------------

- Relative standard error (%): RSE = SE * 100 / x
- Sampling error (95%, m³ /ha) SAE = SE* t_value
- Relative sampling error (95%, %) Rel.SAE=SAE*100/X

Ratio estimator for mean volume of forest (m^3/ha) is computed as follows:

$$\overline{x} = \frac{\sum_{i}^{n} x_{i}}{\sum_{i}^{n} p_{i}}$$

Where;

n = number of clusters (in forest land)

 x_i = sum of plot sections volumes (m^3) in cluster, i,

 p_i = area of plot sections in forest in cluster per (in ha)

Variance of the proportion estimates, with clusters of unequal size (variances as follows:

	$var(\overline{x}) = \frac{1}{(\sum_{i}^{n} p_{i})^{2}} * \frac{n}{n-1} * \sum_{i=1}^{n} (x_{i} - \overline{x} p_{i})^{2}$				
	Where:				
	n = number of clusters (in forest land)				
	x_i = sum of plot sections volumes (m^3) in cluster, i,				
	p_i = area of plot sections in forest in cluster per (in ha)				
	The other estimates are computed as follows:				
	Standard Error (m^3/ha) : $SE = \sqrt{var(\overline{x})}$				
	Relative Standard Error (%): $RSE = SE * 100/\overline{x}$				
	Sampling Error (95%, m^3/ha): SAE = SE * t_value				
	Relative Sampling Error (95%, %): $RSAE = SAE * 100/\overline{x}$				
Calculation of	Step 2 a. Calculate the arithmetic mean using equation 1 below:				
confidence and					
uncertainty	$\frac{1}{2}$ $\sum_{i=1}^{j=n}$				
	$x = \frac{1}{n} \sum_{i=1}^{n} x_i,$				
	Where x is the mean, x is the sampled value, and n is number of sample units				
	Step 2 b. Calculate standard deviation provides a measurement of variation from the average value using equation 2 below:				
	$S = \int_{x=1}^{1} \sum_{i=1}^{i=n} (x_i - \bar{x})^2$ equation 2				
	\mathbf{N}^{n-1}				
	Where S is the sample standard deviation, x is the sampled unit value, n is the number of sample units, and \overline{x} is the arithmetic				
	mean. This equation is applicable to simple random sampling.				

Step 2 c calculate the standard error provides the standard deviation of the mean.
$SE_{\overline{x}} = \frac{s}{\sqrt{n}}$ equation 3
Where SE is the standard error, \overline{x} is the arithmetic mean, s is the sample standard deviation, and n is the number of sample units. This equation is applicable to simple random sampling.
Step 2 d: The confidence interval gives the estimated range of values likely to include an unknown population parameter at the chosen confidence level.
$CI=t^*SE_{\overline{x}}$ equation 4
Where <i>CI</i> is the half width of the confidence interval at a specific confidence level or absolute error, often 95% or 90%, t is the t-value, function of the confidence level and the number of sample units, SE is the standard error, and, \overline{x} is the mean.
Step 2 e: Calculate uncertainty or relative margin of error which is estimated as a percentage, using the half width of the confidence interval as a percent of the mean.
$Uncertainty = \frac{Cl}{\overline{x}}$
Where CI is the half width of the confidence interval at a specific confidence level, and, \overline{x} is the mean.
$U_{total} = \sqrt{U_1^2 + U_2^2 + \dots + U_n^2}$ equation 6

Where U_{total} is the total percentage uncertainty in the product of the quantities, at the chosen CI, and U_n is the percentage uncertainty associated with each of the quantities.

$$U_{total} = \frac{\sqrt{(U_{1*}x_1)^2 + (U_{2*}x_2)^2 + \dots + (U_{n*}x_n)^2}}{|x_1 + x_2 + \dots + x_n|}$$

Where U_{total} is the total percentage uncertainty in the product of the quantities, at the chosen CI, U_n is the percentage uncertainty associated with each of the quantities, and X_i

6.0 SOP QUALITY ASSURANCE/QUALITY CONTROL

Those responsible for aspects of data collection and analysis should be fully trained in all aspects of the field data collection and data analyses. Standard operating procedures should be followed rigidly to ensure accurate measurement and remeasurement. It is highly recommended that a verification document be produced and filed with the field measurement and calculation documents that show that QA/QC steps have been followed.

Quality Manage	ement
QA / QC procedures	 Sub-step Q1. The Coordinator provides warning labels or excludes impossible transitions through logical checks built into response design. Sub-step Q2. The Coordinator conducts ongoing hot, cold and auxiliary data checks during data collection and conduct regular review meetings among all interpreters. Auxiliary data checks: use an external data source, such as externally created maps, to compare to the sample unit classification. Discrepancies between the two datasets can be flagged for rechecking. Confirmed differences between the two datasets can be documented to showcase why sample-based area estimation may give difference results than other data sources. Cold checks: sample units that are randomly selected from the data produced by interpreters.
	by interpreters. The decisions made by the interpreters are reviewed by the coordinator or group of interpreters meeting together. If the error by the interpreter reflects a systematic error in their interpretation, it is discussed directly with the data analysts and the affected sample units are corrected. It checks: sample units that are flagged as low confidence. These marked sample units should be further reviewed by the coordinator or group of interpreters meeting together. Once reviewed labels that are deemed to be incorrect on
	these sample units should be adjusted by the interpreter.

6.1 Quality Assurance

6.1.1Data Collection in the Field:

During all data collection in the field, the crew member responsible for recording must repeat all measurements called by the crew member conducting the measurement. This is to ensure the measurement call was acknowledged and that proper number is recorded on the data sheet. In addition, all data sheets should include a 'Data recorded by' field with the name of the crew member responsible for recording data. If any confusion exists, the transcribers will know which crew member to contact.

After data is collected at each plot and before the crew leaves the plot, the crew leader shall double check to make sure that all data are correctly and completely filled. The crew leader must ensure the data recorded matches with field conditions, for instance, by verifying the number of trees recorded.

6.1.2 Data Sheet Checks:

At the end of each day all data sheets must be checked by team leaders to ensure that all the relevant information was collected. If for some reason there is some information that seems odd or is missing, mistakes can be corrected the following day. Once this is verified and potential mistakes checked, corrected data sheets shall be handed over to the person responsible for their safe keeping while the crew is still in the field. Data sheets shall be stored in a dry and safe place while in the field. After data sheets have been validated by crew leaders, the data entry process can commence.

6.1.3 Field Data Collection Hot Checks:

After the training of field crews has been completed, observations of each field crew and each crew member should be made. A lead coordinator shall observe each field crew member during data collection of a field plot to verify measurement processes and correct any errors in techniques. It is recommended that the crew chiefs switch to a different crew to ensure data collection procedures are consistent across all field crews. Any errors or misunderstandings should be explained and corrected. These types of checks should be repeated throughout the field measurement campaign to make sure incorrect measurement techniques have not started to take place.

6.1.4 Data Entry Checks:

To ensure that data is entered correctly, the person entering data (whether during fieldwork or after a return to the office) will recheck all of the data entered and compare it with the original hard copy data sheet before entering another sheet. It is advised that field crew leaders either enter the data, or participate in the data entry process. Crew leaders have a good understanding of the field sites visited, and can provide insightful assistance regarding potential unusual situations identified in data sheets. Communication between all personnel involved in measuring and analyzing data should be used to resolve any apparent anomalies before final analysis of the monitoring data can be completed. If there are any problems with the plot data (that cannot be resolved), the plot should not be used in the analysis.

6.2 Quality Control

6.2.1 Field Measurement Error Estimation

A second type of field check is used to quantify the amount of error due to field measurement techniques. To implement this type of check, a complete re-measurement of a number of plots by people other than the original field crews is performed. This auditing crew should be experienced in forest measurement and highly attentive to detail. A total of 10% of plots (or clusters if clustered plots are used) should be randomly or systematically chosen to be re-measured. Where clustered plots are used, all plots within a selected Cluster shall be measured. All trees shall be re-measured in each plot. Field crews taking measurements should not be aware of which plots will be re-measured whenever possible.

After re-measurement, data analysis is conducted and biomass estimates are compared with estimates from the original data. Any errors discovered could be expressed as a percentage of all plots that have been rechecked to provide an estimate of the measurement error.

For all the verified plots:

Measurement Error (%) = (t C/ha of Measured plot - t C/ha of re-measured Plot) X 100

Quality Control Check:

After all data has been entered into computer file(s), a random check shall be conducted. Sheets shall be selected randomly for re-checks and compared with data entered. Ten percent of all data sheets shall be checked for consistency and accuracy in data entry. Other techniques such as data sorting and verification of resulting estimates shall be employed to ensure data entered properly corresponds to field sites visited. Personnel experienced in data entry and analysis will be able to identify errors especially oddly large or small numbers. Errors can be reduced if the entered data is reviewed using expert judgment and, if necessary, through comparison with independent data.

6.2.3 QA/QC of Laboratory Measurements

Standard operating procedures (SOPs) should be created and rigorously followed for each part of all laboratory analyses. All instruments should be calibrated.

For example, all combustion instruments for measuring total C or C forms should be calibrated using commercially-available certified C standards. SOPs should include steps to calibrate and check analyses. Blanks can be analyzed, or analytical runs can include a check sample of known C concentration. One standard per batch/run should be included in the samples sent to a remote lab as an additional check of the quality of the instruments and lab procedures.

All balances for measuring dry weights should be calibrated against known weights. Where possible, 10-20

% of samples could be reanalyzed/reweighed to produce an error estimate.

7.0 SOP DATA STORAGE AND ARCHIVING

Field equipment
Field log book/electronic field log book Laptop computer
Desktop computer
Connection to
network server
Scanner

This SOP describes the methods for storing and archiving data in a simple yet safe and retractable way, so data can be accessed whenever necessary. Data storage and archiving is a very important and final component of the data collection process. The basic framework involving data storage and archiving follows.

7.1 Data Storage in the Field

In the field one person is responsible for storing and keeping the field data sheets; this person can also be the person who also validates the data on the sheets and is one of the team leaders.

If the data entry process is being done or started in the field, these sheets will be used after which they must be returned to the person responsible for their safe keeping. These sheets are stored in a dry and safe place where they cannot be tampered with until they are transported to the office.

7.2 Data storage in the Office

In the office, all original field data sheets shall be scanned and compiled into a document to be stored electronically. This avoids any changes to be made to the original sheets.

7.2.1 Hard copy

The original data sheets are photocopied and are kept in separate location. The data sheets are placed in a special jacket folder in the filing cabinet with the location name and date written on the label. Inside of these jackets there are folders with the different types of data collected (Biomass, Logging, Skid trails, Roads and Decks, Regrowth, Wood Density etc.). After all data has been entered into a digital format and SOP QA/QC completed, the two sets of data sheets are then stored in secure fireproof filing cabinets in two separate locations.

7.2.2 Soft Copy

The scanned data sheets are stored on a computer in the office, along with all tools with the entered data, including data entered in the field laptop. These data files are backed up on a server. Folders containing data and folders containing tools should be properly named and adequately organized. All digital data collected and compiled (photos, proposal and report for exercise) are also stored in the archive file on both the desktop in the office and on the server. On the server there are a few folders in which all data are placed as follows:

- 1. '*Field Data*', in which sub folders are created and are named the same way (Location) as the hard copy folder so as to have a uniform filing system. In each sub folder there are two folders; pictures and scanned data sheets in which the respective information are placed;
- 2. '*Data Analysis*' in which all completed tools are placed after the data entry has been completed;
- 3. '*Template*' in which all tool templates and field data sheets used in the data analysis are placed;
- 4. 'Documents' in which all documents related to the project are placed; and
- 5. 'Field Proposal & Report' in which all field exercise proposals and report are placed.

7.2.3 Procedure for Data File Backup

Any file(s) that is updated during the data analysis will be backed up to a network server. This back up will be done daily on the office computer(s), and at the end of every week they must be saved on an external hard drive and the folder on the server which is specifically designated for this data storage.

7.2.4 Procedure for Compiling and Managing Field Logbook or Electronic Log Book

This logbook will be both of an electronic form and of the traditional book keeping format (a book). Both log forms will be updated simultaneously and twice for each field venture, before and after each trip. Logbooks will be used for recording the logistics of the field exercise, and providing explanation about field campaigns (e.g. date of departure to the field and date of returning, number of plots, location, field crew, challenges etc.). Each field campaign will be given a unique reference number and each report will also be given a reference number related to that of the campaign. This is to facilitate cross referencing processes.

Upon returning to the office after field records are entered, the logbooks will be stored in a secure filing cabinet or placed on the network server via desktop computers respectively, after being updated. Upon the completion of field reports of which each report will be given a unique reference number, the logbooks will be revisited and the report number will be inserted for future references.

It is important to restrict access to logbooks and information only to users, as they alone are responsible for making changes.

REFERENCES

- 1. Chave, J., et al. (2015). Improved allometric models to estimate the above ground biomass of tropical trees. Global Change Biology.
- 2. Chidumayo, E. (2012). Assessment of Existing Models for Biomass and Volume Calculations for Zambia. ILUA-II Consultant Report Paper, Zambia.
- 3. Wanyan Susi Dharmawan, Kirsfianti Linda Ginoga, Eruanto Indra Putra and Alfan Gunawan Ahmad, 2010, Standard Operating Procedures (SOPs) for Field Measurement, Indonasia Bogor
- 4. Integrated Land and Resource Governance Task Order under the Strengthening Tenure and Resource Rights Ii (Starr Ii) Idiq Standard Operating Procedures for Terrestrial carbon Measurement Cocoa Agroforestry Systems, 2019, Burlington, USA
- 5. Intergovernmental Panel on Climate Change (IPCC) (2006). Agriculture, Forestry and Other Land Uses, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, Hamaya, Japan), Vol 4.
- 6. GRZ, 2014: ILUA-II Data Processing for Biophysical Assessment, Zambia, Lauri Vesa Consultant, FAO-Finland Forestry Programme, FAO4. April, 2014
- 7. GRZ, 2013: Integrated Land Use Assessment Phase II Zambia, Biophysical Field Manual; Forestry Department, Ministry of Lands, Natural Resources and Environmental Protection with support from Food and Agriculture Organization (FAO)
- 8. Sarah M. Walker, Timothy RH Pearson, Felipe M. Casarim, Nancy Harris, Silvia Petrova, Alex Grais, Erin Swails, Mike Netzer, Katherine M Goslee and Sandra Brown, 2012: Standard Operating Procedures for Terrestrial Carbon Measurement, Winrock International

Ministry of Green Economy and Environment

Zambia Integrated Forest Landscape Project

Improving lives through Sustainable Management of Natural Resources

The Zambia Integrated Forest Landscape Project is a Government initiative which provides support to rural communities in the Eastern Province to allow them to better manage the resources of their landscapes so as to reduce deforestation and unsustainable agricultural expansion; enhance benefits they receive from forestry, agriculture, and wildlife; and reduce their vulnerability to climate change.

Simultaneously the project is creating the enabling environment for emission reduction purchases to be done through the subsequent phase - the Zambia Eastern Province Jurisdictional Sustainable Landscape Programme (EP-JSLP).

The ZIFL- Project is a product of cooperation between the Government of Zambia, the World Bank & partners.

For further information, please contact:

ZIFL Project Implementation Unit 1940 Building, opp High Court PO Box 510169, Chipata, Zambia

Visit us at: www.ziflp.org.zm

